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Abstract— In this paper we present a new dataset, called
Air2Land(A2L), for advancing the state-of-art in object de-
tection and 6D pose estimation in the context of UAV auto
landing research. It meets vision and robotics for ground-based
vision guidance system having the multi-modal data obtained
by different sensors, and pushes forward the development of
computer vision and robotic algorithms targeted at visually
assisted UAV landing. The dataset, contains sequential stereo
images and other sensor data (UAV pose, PTU angles) simulated
in various climate conditions and landing scenarios, can be
employed for tasks including UAV tracking, keypoint localiza-
tion, pose estimation and action recognition, etc. In addition to
providing plentiful and scene-rich data, our dataset covers high
risk scenarios that are hardly accessing in reality. The dataset
is avaliable at https://zhengxch.github.io/Air2Land/

Fig. 1. In the Air2Land dataset, all pictures are labeled with object
annotations, keypoint localization, instance segmentation, current location,
altitude of UAV, and the rotation data from the PTU on the ground.
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I. INTRODUCTION

In the past decades, unmanned aircraft vehicle (UAV) has
been a hotspot in the field of robotic systems. Some of the
research results have been emerged in military, industrial
and civil applications. Since UAVs usually conduct repeated
missions, auto landing and safe recovery are of great signifi-
cance. To tackle this problem and guarantee the feasibility of
UAV auto-landing within GPS-denied environment, several
methods based on ground vision measuring system have
been proposed [1]-[4]. However, the insufficient quality of
data due to difficulties in implementing experiments and
measuring error, have not only limited the verification of
generation performance of the method but also hindered the
introduction of data-driven solutions.

Observing the landing of fixed-wing UAV from the ground
turntable camera can capture the landing progress of the
UAV. Image processing and computer vision algorithms are
then applied to these ground visual data to extract high-
level information regarding the environment. Although there
exist several famous public datasets (e.g., COCO[5], Pascal
VOC[6]), the samples in these datasets consist of natural
images that are mainly captured by handheld cameras. In the
field of aerial image, existing datasets [7][8] mainly focus on
the detection and surveillance of ground targets. Datasets that
record the landing process of aerial drones based on ground
vision equipment have not yet been proposed.

For the above problems, we build a new dataset called
Air2Land which contains of diverse multi-modal data ob-
tained by a hardware on the loop simulation system. Our
main motivation is to provide a domain-specific dataset
for machine learning tasks such as UAV detection/tracking,
keypoint localization, pose estimation and action recognition
in vision-assisted UAV landing research. These tasks can be
targeted individually or simultaneously in a multi-task set
up. With Air2Land, we provide not only sufficient data for
verifying a measuring solution, but also a basis for training
and benchmarking algorithms.

The Air2Land dataset combines vision and robotics for
UAV autonomous landing having the multi-modal data from
both airborne and ground sensors. Consisting of more than
76k pictures for UAV landing, the dataset covers changes in
flight conditions, weather, seasons and other factors during
the drone landing process. The pictures mainly are recorded
at two virtual airports restored in full proportion according
to the real scene through a simulator supported by the virtual
engine UE4.

In this work, we emphasize the differences between
ground-to-air perspective images and natural images in the

https://zhengxch.github.io/Air2Land/


TABLE I
COMPARISON BETWEEN OUR AIR2LAND DATASET AND SIMILAR DATASETS USABLE FOR OBJECT DETECTION AND POSE ESTIMATION RELATED TO

UAV. THE SYMBOL / DENOTES THAT THE INDICATOR IS NOT AVAILABLE FOR THE DATASET.

Dataset Air2Land AU-AIR UAV123 Mid-Air Pascal3D+ YCB-Video LINEMOD
Number of frames 76k 3k 110k 119k 30k 134k 18k

Resolution 1280×720 1920×1080 1280×720 1024×1024 500×375 640×480 640×480
Data type synthetic real synthetic synthetic real synthetic real

Environment outdoor outdoor outdoor outdoor outdoor indoor indoor
Perspective Ground-to-air Air-to-ground Air-to-ground Air-to-ground Various Close shot Close shot

Climate variations yes no no yes no no no
Extreme lighting yes no no no yes no no

Stereo yes no no yes no no no
Bounding box coordinates yes yes no / no yes no

Keypoints yes no no / yes no no
6d pose yes no no / yes yes yes

Camera pose yes yes no yes no no no

context of object detection and pose estimation tasks. To
this end, we compare images samples and object instance
between Air2Land dataset and other dataset for similar object
or dataset. To generate data, we constructed a hardware-in-
the-loop semi-physical simulation system, which gives the
synthetic image a motion characteristic closer to the real
flight scene. In our experiment, we train and evaluate one
keypoints localization algorithm (stacked hourglass network)
on our dataset. We explore the use of deep learning algo-
rithms for keypoints localization in the particular case of
weather and light changes.

A. Related Work

It is a challenging task to photograph a UAV in flight
from the perspective of a ground-based camera and to solve
the UAV’s position attitude. Park, Faessler et al. [1] have
achieved the solving of the UAV’s position attitude through
the geometric relationship between diodes and photogram-
metry by attaching LED lights to key features on the UAV
and photographing them using ground-based sensors. By
setting up colored marker points on the body of the aircraft
as extracted key feature points, Altug, Oh et al. [2]process
the sequential images captured by the camera to calculate
the UAV’s position attitude. These studies tend to use only a
limited number of images, and there is currently no dataset
proposed specifically for this task.

Most of the current datasets associated with UAVs are
from onboard cameras to observe the external environment
or objects. AU-AIR [8][7] enables UAVs to fly at different
altitudes, photograph a variety of objects on the ground and
provids flight states such as speed, altitude, attitude angle
and other flight states, thus forming a multimodal dataset.
Mueller et al. [7] present UAV 123, a dataset for low-
altitude UAV target tracking, and the authors compare the
performance of a variety of current trackers on this dataset.
Although the tracked object contains a drone in flight, it only
provides information on the image coordinates of the object
drone. Fonder et al. [9] propose a synthetic dataset (Mid-Air)
for low altitude drone flights in unstructured environments

(e.g., forest, country). It includes multi-modal data regarding
the flight (e.g., visual, GPS, IMU data) without any annota-
tions for visual data.

For the task of positioning and pose estimation of rigid
body targets, most of the available datasets are related to
the use of robotic grasping of objects on the platform.
For example, YCB-Video [10] and LINEMOD [11] take
close shots of objects from the grasping range and give the
6d positional orientation of the target object to inform the
robotic grasping. The objects in these datasets are mainly
daily life objects that are not moving and the imaging process
is static and stable. The size of the objects varies little in scale
throughout the image.

Table 1 summarizes some common datasets and compares
them to our Air 2Land dataset (see first column), according
to the amount of data, the acquisition conditions, and types
of data. Table 1 also highlights that the largest and most
complete datasets were mainly designed for ground target
tracking or static object pose estimation.

B. Contribution

Looking also at the comparison of existing datasets in
Table I, the followings are the main contributions of this
work:

• To the best of our knowledge, the Air2Land dataset
is the first ground-to-air perspective dataset for UAV
detection and pose estimation. The dataset includes
flight data (i.e., time, GPS, altitude) in addition to
visual data and objects and keypoints annotations. We
emphasize the differences between object in terrestrial
camera and others.

• Considering the practical applicability, we form a base-
line training and testing keypoint localization algorithm
with the Air2Land dataset. We studied and explored
the effects of color and light variations on localization
results.



Fig. 2. Elaboration of Air2Land’s data generation scheme. Unlike simple picture synthesis, the real-world simulator is driven by flight control data
generated by the hardware-in-the-loop system, and kinematic characteristics are passed from the controller to the drone model, then to the scene simulator,
and finally naturally retained within the output sequence of images.

II. THE TERRESTRIAL STEREO GUIDANCE SYSTEM FOR
UAV SAFE LANDING

A lot of mature research work on guiding the take-off and
landing of UAVs through ground-based systems have been
implemented [12]. Setting the guidance unit on the ground
has the advantages of obtaining rich computing resources
and supporting multiple aircraft, which can fully copy with
the loss of GPS signal during the landing phase. At present,
most relevant researches choose laser or microwave radar as
the detection method. Although accuracy will not be lost, it
has the disadvantage of insufficient robustness due to active
detection and reliance on microwave signals for judgment.
To this end, a ground stereo guidance system for UAV safe
landing has been constructed and updated for several times
in our previous work [13]-[15]. In our guidance system, two
PTUs (pan-tilt unit) are symmetrically located on both sides
of the run way with each camera fixed on. The computing
unit processes the images captured by cameras during UAV
landing and estimates the its spatial coordinate and posture.
The motion parameters are wirelessly feedback to the on-
board autopilot to assist its safe landing.

Although we have built a physical experiment environment
and carried out many experiments in the early stage, fixed-
wing drones have certain risks in landing phase and it is
difficult to design some rare or even dangerous scenes,
which are likely to appear and fatal in reality. Therefore, we
virtualize airports and drone, and use the hardware-in-the-
loop semi-physical simulation environment as a platform for
us to carry out repetitive experiments, collect data and verify
algorithms.

As shown in Figure 2, the Pixhawk autopilot runs the
actual airborne flight control code, which is responsible for
the control of the drone during the loading and landing
of the mission route, the monitoring and feedback of the
drone flight status, the analysis and execution of operating
instructions, etc. QGroundControl is a ground station for

UAV flight protection, mainly responsible for flight mission
planning, digital map display, data link transmission, and
comprehensive data analysis. ROS connects various compo-
nents to realize the transmission of messages on different
topics, and the 3D simulator performs simulation and display
of the scene.

As the core of scene simulation and data generation, the
3D simulator realizes real-time rendering based on Unreal
Engine[16] rendering pipeline, in combination with Airsim,
a plugin developed by Shah et al. [17] for this engine.
Despite being incompletely physically consistent, the scene
simulator has reached a level of visual likelihood and realism
which competes with simple ray-tracing algorithms while
offering the benefits of reduced render time compared to
their physically accurate alternatives.

Different from completely use virtual synthesis software to
generate images, our simulation system includes the physical
controller and professional dynamics simulation software
into the loop, which retains the kinematic characteristics of
the simulation data to the greatest extent. This kinematic
feature enables us to make full use of the motion correlation
of picture frames to accomplish some tasks, such as the
position and pose estimation of sequence images.

III. OBJECT DETECTION AND POSE ESTIMATION IN
TERRESTRIAL IMAGE VS OTHERS

Vision-based object detection and pose estimation are very
common tasks, the availability of large amounts of data and
computing power enables deep neural networks to achieve
state of art results in part of them. Compared with detection,
it’s obvious that pose estimation can accurately represent the
distance and orientation information of an object. Generally,
pose estimation tasks are divided into two categories, one of
which is to use airborne or vehicle-mounted cameras to cap-
ture a structured environment during movement, and estimate
one’s own attitude through the feature correlation of adjacent
frame images. This task is often called visual odometry in



SLAM (Simultaneous localization and mapping). The other
is to use the camera to take a close-up shot of the rigid
object in the desktop or cabinet to determine its orientation
to facilitate positioning and grasping operations. This task is
more common in robotic manipulation, usually called object
6d pose estimation.

Ground-to-air perspective images have different charac-
teristics from images appearing in the above two types of
tasks due to having an unique view. First of all, from the
perspective of the ground camera, the landing of UAV is a
dynamic process from the distant sky to the near ground.
During the imaging process, the scale of the drone in the
image and the proportion of the target area in the entire
image vary greatly. These changes are more significant when
compared to images of objects placed on a flat surface taken
at close range, which basically maintains a fixed shooting
distance and target area ratio. In the ground-based camera
field of vision, the UAV has grown from small to large, from
overlapping several starting points to covering most of the
image, whereas the proportion of objects in an object 6d
pose estimation task usually does not vary that much. In
particular, when the drone is close to the ground camera,
the turntable will also rotate at a large angle to track the
drone, resulting in rapid switching of the background. The
dramatic diversification in scale and background pose a great
challenge to target area positioning and feature-based pose
estimation. In addition, in the task of manipulator grasping,
the camera often does not move or rotate but is fixed in a
suitable imaging area with fixed angle.

Secondly, when comparing with visual odometry, although
the two ideas of obtaining the relative pose of the camera and
the photographed object by solving PNP problems are sim-
ilar, these two issues are not simply an inverted relationship
between subject and object. The visual odometry focuses on
the static part of the image, usually the background, and
moving objects will not be used as reference for camera’s
self-positioning, while the terrestrial camera follows the
foreground part closely, and the background information is
often ignored. This difference means that when we try to use
some end-to-end approach for pose calculation, we cannot
use the information of the entire picture as the input of neural
network like visual odometry.

Finally, since the inspected UAV has no texture, only
characteristic edge and anchor point information can be
selected as image features for pose estimation. These features
are easily lost or obscured when the UAV attitude changes
significantly. Besides, the left-right symmetry of the drone
is likely to cause ambiguity in the semantics of key features
or confusion in target orientation.

IV. AIR2LAND – THE MULTI-MODAL UAV DATASET

After the details related to the simulation environment
and challenges addressed by the task, we now propose a
synthetic dataset for UAV landing guidance. Each sample
contains information including the image captured by the
terrestrial camera, object and keypoint annotations, and the
corresponding UAV attitude as well as PTU rotation angles.

Fig. 3. Comparison of bounding box sizes for observations from different
datasets. The drone’s landing process from far to near makes its bounding
box cover a wide range of proportions of the full image, with some samples
spread over intervals with proportions greater than or equal to 0.5.

All images are recorded at a resolution of 1280×720 at a
frame rate of 25 frame per second (fps), while the sensor
data corresponding to each frame is saved to a specified tag
file.

A. UAV Platform

We adopted “Pioneer”, produced by VIGA Tech com-
pany, as our platform, since it has sufficient wingspan to
be detected at a distance from the lens, reserving enough
time and spatial intervals for us to record and analyze the
data. In addition, its feature points are more dispersed and
distinguishable. We provide the CAD model of the UAV and
the coordinates of several anchor points that we consider
to be important, which are indispensable in the methods
of pose estimation based on contour matching or 2D-3D
correspondence point matching.

B. Dataset Collection

We conducted a variety of flight tests and collected data
at two virtual airports that were 1:1 replicas of the real
airports in Changsha, Hunan, and Xuchang, Henan, where
we conducted our out-of-field flight tests. By setting up flight
missions in the QGC control station and introducing dynamic
interference to the aircraft in Xplane, we conducted a large
number of virtual flight tests based on the semi-physical
simulation system mentioned above, tried many experiments
that were difficult to carry out in reality.

We carefully designed the route and set up appropriate
dynamic interference. Flight tests such as normal flight,
large-angle rotation under crosswind interference, go-around,
and instability crash were carried out at two airports, with all
critical data recorded. To enrich visual changes, we traversed
the time and weather conditions for each flight trial through
interface provided by the Airsim plugin, covering the early
morning, midday, and evening hours and weather conditions
such as rain, snow, haze, and wind. Using a pre-specified
communication protocol, we repeated the trials offline by



Fig. 4. The UAV present a very diverse range of perspectives and scale variations in the field of view of ground-based cameras, and the labeling results
for some typical cases are shown in the figure.

varying only the weather and time factors to ensure that
the conditions were identical except for the visual imaging
factors, which laid the foundation for our later data analysis.

Each flight test corresponds to 48 light and weather
changes, taking into account all possible external conditions
and posing a considerable challenge to the detection algo-
rithm.

C. Annotation

Generating data synthetically helps to record ground-
truth data which is more reliable or even impossible to
capture with real sensors, thereby ensuring the accuracy of
annotation.

The 3D Reality Simulator follows a strict coordinate
transformation and projection transformation relationship
when performing scene simulation, and this transformation
relationship can be used as the basis for our batch automatic
annotation of data. We make full use of the principles of
spatial coordinate transformation and OpenGL perspective
projection to write a script program for automatic projection
annotation of the simulated images, which eliminates the
possible errors caused by manual annotation. The annotation
results for some typical images are shown in Figure 4.

V. EVALUATION AND ANALYSIS

The construction of a theoretical model for target pose
estimation based on the geometric constraints of the target,
with clear physical connotations and strong interpretability,
is a common solution to the problem of target spatial
position pose estimation in computer vision research. The
most widely used pose solution method is to apply the pin-
hole camera model to solve the correspondence between
2D image points and 3D spatial points as a PnP problem.
Fully considering the influence of the strength of the feature,
visibility, envelope and number of anchor points, we selected
the left wingtip, left tail tip, front gear, nose tip, right wingtip,
and the right tail tip of the drone as feature anchor points.

Fig. 5. The keypoint localization neural network model consists of two
stacked hourglass network modules.

To analyze the robustness of methods to visual changes,
we use images generated under sunny, cloudy, light rain,
moderate rain, light snow, moderate snow as the training
set, and the testing set is composed of images under heavy
snow, heavy rain, and foggy weather, both of which cover
the early morning, midday, and evening time periods. The
number ratio of the training set and testing set is about 7:3.
During the evaluation, we consider real-time performance
rather than achieving a state-of-art accuracy for the sake of
the applicability. We choose Stacked hourglass network[18],
which is widely used in human pose estimation, as our
baseline method. In order to reduce the parameters to obtain
a lighter model, we set the number of hourglass modules
of the network to 2, with each hourglass module has one
residual block.

To compare localization performances, we use percentage
of correct key-points (PCK) from [19] that is a prominent
metric in human pose estimation. It measures accuracy of
the localization of body joints. Detected joint is considered
correct if the distance between the predicted and the true joint
is within a certain threshold (threshold varies).Drawing on
this metric, we choose the bounding box of the drone’s nose



TABLE II
COMPARISON BETWEEN OUR AIR2LAND DATASET AND SIMILAR DATASETS USABLE FOR OBJECT DETECTION AND POSE ESTIMATION RELATED TO

UAV. THE SYMBOL / DENOTES THAT THE INDICATOR IS NOT AVAILABLE FOR THE DATASET.

weather time LW LT FG N RW RT mean fps

foggy
8:00 62.02 70.91 68.60 72.76 67.32 79.32 70.16 29.98

12:00 63.63 72.76 77.57 73.87 75.33 73.97 72.86 31.61
17:00 60.29 77.13 72.41 73.05 68.20 75.38 71.08 30.07

Heavy rain
8:00 63.62 79.42 77.41 75.99 73.08 78.95 74.75 30.04

12:00 68.90 78.82 79.92 77.98 78.92 78.99 77.26 31.40
17:00 60. 63 72.77 74.39 79.24 69.36 76.39 74.43 27.24

Heavy snow
8:00 61.34 68.09 69.57 70.87 60.86 70.54 66.88 21.67

12:00 62.62 70.01 72.04 74.90 60.64 72.28 68.75 24.94
17:00 64.29 63.06 66.30 70.38 65.32 69.77 66.52 23.82

mean 62.75 72.55 73.13 74.34 68.78 75.07 71.41 27.86

as a benchmark, and set the correct threshold of prediction
to 50% of the length of the rectangular box, which we also
call PCKh@0.5.

We use the epoch of 50, batch of 16 and RMS optimizer
with learning rate = 2.5e-4. Images are resized to 512 to
fit the network input. The training is stopped when the
performance of the model on the validation dataset starts to
degrade. After completing the training, we tested the model
using the image set corresponding aforementioned extreme
weather condition, and the results are given in the Table II.

We observe that the PCK values of left wing tip and
right wing tip are significantly lower than that of other
anchor points, which may happen due to the wingtip anchor
points varies considerably in appearance characteristics from
different viewpoint and is located at the edge of the region
of interest. When considering the generalization ability of
the model under different weather conditions, it can be seen
that the model generalizes best in heavy rain with a PCK
value of about 75, while the model generalizes worst in
heavy snow, and the test results in foggy weather are in the
middle of the two. As shown in the error detection example in
Figure 4, the visibility of the images generated in heavy snow
and hazy weather is reduced very significantly, and locating
the coordinates of the anchor points from these images is
very challenging. For the time metric, the model’s average
inference speed over the three test subsets is about 27FPS
on 1080Ti, and if consider the spatial pose estimation link
that has not yet been added, it is clear that increased speed
is necessary for practical applications.

VI. OVERALL LIMITATIONS

Despite all our efforts, there is still much room left for
improving in Air2Land.

The first one is that our dataset only contains two sim-
ulated airports and single observing object. Although we
have tired our best to enrich the samples by simulating
weather and light variations, we have not addressed this
problem at all. In addition, due to the unique nature of the
terrestrial vision-guided UAV landing mission, the UAV’s
angle variation is always within a limited range, and our
observables tend to present similar perspectives in camera,

with a unipolar sample distribution. This means that the
algorithm’s ability to generalize to other perspectives is
untested.

The second limitation is that the simulator we use does not
include situation in which the drone appears truncated in the
image or breaks out of the camera’s field of view. Both can
have implications for algorithms based on sequential images
for posture tracking. Our dataset should nonetheless be useful
to get a reliable performance score for simple scenarios and
therefore to get a first overview on the potential of any tested
method.

VII. CONCLUSION

We introduce a new synthetic dataset, named Air2Land,
featuring 76k frames of UAV landing process recorded
by terrestrial camera with varied illumination and climate
conditions. The content of our dataset contains multiple
synchronization modalities that provide data for posture
estimation tasks (e.g., UAV pose solving) as well as purely
computer vision tasks (e.g., target detection or semantic point
localization). Our original intent was to provide a dataset
that could be used for algorithm testing by our research
colleagues in the field of UAV landing state monitoring based
on external observational methods. While partially achieves
this effect, the size and content of this dataset make it
also useful for training and testing generic machine learning
algorithms.

We explain in detail the process of generating the simu-
lation data, thereby highlighting the kinematic laws inherent
in the images. In addition, we analyze ground-based and
other view camera imaging results and highlight their im-
plications for the positional estimation task. Moreover, since
we consider real-time performance and applicability in real-
world scenarios, we test the generalization capability of the
keypoint location algorithm on our dataset.
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