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Abstract 

This article concentrates on ground vision guided autonomous landing of a fixed-wing Unmanned Aerial Vehicle 

(UAV) within Global Navigation Satellite System (GNSS) denied environments. Cascaded deep learning models are 

developed and employed into image detection and its accuracy promoting for UAV autolanding, respectively. Firstly, 

we design a target bounding box detection network BboxLocate-Net to extract its image coordinate of the flying ob-

ject. Secondly, the detected coordinate is fused into spatial localization with an extended Kalman filter estimator. 

Thirdly, a point regression network PointRefine-Net is developed for promoting detection accuracy once the flying 

vehicle’s motion continuity is checked unacceptable. The proposed approach definitely accomplishes the closed-loop 

mutual inspection of spatial positioning and image detection, and automatically improves the inaccurate coordinates 

within a certain range. Experimental results demonstrate and verify that our method outperforms the previous works 

in terms of accuracy, robustness and real-time criterions. Specifically, the newly developed BboxLocate-Net attaches 

over 500 fps, almost five times the published state-of-the-art in this field, with comparable localization accuracy. 

Keywords: UAV autolanding; Stereo Vision; Safe Landing; Deep Learning; Localization
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1. Introduction 

In the past few decades, Unmanned Aerial Vehicles 

(UAVs) have drawn more and more research attention 

due to their remarkable characteristics, such as low 

risk of casualties, low cost, lightweight, and great 

mobility associated with adaptability to dirty, dull 

and/or dangerous situations. UAVs have, therefore, 

been applied to a variety of scenarios, including me-

teorological detection, local area monitoring, survey 

and mapping, forest fire prevention, earthquake res-

cue1 and many more. With the integration of advanced 

automation technology

proven to be the most challenging and hazardous pe-

riod of aerial flight in many practical applications.2 

Even minor errors in guidance or control might cause 

system damages or even crashes. This situation be-

comes more remarkable due to a variety of complex 

application scenarios and meteorological environment 

conditions. Under such circumstances, autonomous 

landing has been an important and essential technique 

for unmanned systems within unknown or Global 

Navigation Satellite System (GNSS)-denied scenari-

os.3 Hereafter, autonomous landing within 

GNSS-denied scenarios is called as autolanding. Fur-

thermore, this article concentrates on vision-based 

localization for autolanding then. 
Previous research on vision-guided autonomous 

UAV landing can be categorized into onboard vision 

and ground vision modes. The onboard vision mode 

usually employs one or more cameras installed on the 

flying vehicle as a positioning sensor.4-  7 When the 

aerial vehicle approaches the ground runway, the 

http://www.sciencedirect.com/science/journal/10009361
http://www.elsevier.com/locate/cja
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camera detects the runway and plans an appropriate 

landing trajectory. In contrast, the ground vision mode 

distributes and fixes vision systems on the ground.8- 10  
Compared with onboard navigators, the ground vi-

sion system possesses more scalable computing re-

sources and can save costs by placing them on a run-

way instead of configuring each vehicle separately. 

Furthermore, the image from the ground-to-air per-

spective is much more convenient for processing than 

the images from the air-to-ground view. Therefore, in 

this study, we focus on the ground vision mode for 

autolanding of fixed-wing unmanned aircraft. 
So far, several prototypes of ground vision based 

autonomous landing systems have been developed in 

Refs.8-10, respectively. All are concerned with a map-

ping from image sequences to spatial trajectories us-

ing computer vision which usually involves two 

workflow steps: flying vehicle target detection and 

automatic positioning. In this study, the vision auto-

matic detection schemes are concerned and consid-

ered further. As for similar scenarios, Yang et al.8 pre-

sented accurate UAV landing performance in a 

GPS-denied environment, by running a ground-based 

near infrared camera system. A nose infrared laser 

lamp is fixed on the vehicle as a cooperative marker 

for image detection. The foreground area of the can-

didate targets is obtained by a simple morphological 

pre-processing. Researchers at Portuguese Navy Re-

search Center9 used a ground based monocular vision 

system supporting the autonomous landing of a 

fixed-wing aerial vehicle onto a fast patrol boat. For 

obtaining the relative pose of the vehicle, they em-

ployed several 3D model-based system combinations 

using the Computer-Aided Design (CAD) model for 

tracking. Both systems need to know the geometrical 

model or place the cooperative marker on the flying 

vehicle. On the contrary, Kong et al. developed a tra-

ditional stereo ground-based system including two 

pan-tilt units and two cameras, without relying on any 

cooperative onboard marker or geometrical 

knowledge.10 Since the system was conducted, Hu et 

al.3,10,11 have been working on algorithms of automatic 

detection and localization on an autolanding vehicle. 

Both corner-based and skeleton-based algorithms 

have been designed and implemented to target detec-

tion on the ground captured sequential images.3,12 

Tang et al. 3 initially integrated the active contour 

method into Chan-Vese model detection, and an ex-

tended Kalman estimator was developed for ground 

vision based localization. Thanks to on-ground suffi-

cient computing resources, Cao et al.13 adopted and 

improved a flying vehicle tracking algorithm based on 

GOTURN, which attaches the frame rate to 100 fps, 

nearly 5 times higher than that of the Chan-Vese algo-

rithm. 
Although the pre-existing researches have shown 

remarkable detection performance in the UAV auto-

landing processing, challenges still exist in accuracy, 

robustness and real-time feature. Yang’s target detec-

tion method8 is only suitable for UAVs equipped with 

infrared laser lamp at the nose, which is difficult to be 

generalized for various types of aircraft. Due to the 

processing rate of below 25 fps, the real-time perfor-

mance of Chan-Vese is seldom appropriate for practi-

cal applications of autolanding.3 Similarly, the 

GOTURN tracking based method13 relies on hu-

man-computer interaction for labeling the bounding 

box within the first frame. Meanwhile, the tracking 

error ought to accumulate for a long-term period. 

Once a frame is tracked to the fall target, it may cause 

inefficacy of the whole vision-based tracking even. 

Particularly, some scenarios cannot be correctly 

treated by using the pre-existing methods. For in-

stance, part of the landing vehicle goes out of the field 

of view, and only the partial body is captured from the 

images.  

In the consideration of the existing issues in ground 

vision based methods, this paper innovatively inves-

tigates a novel deep learning-based method that maps 

sequential image frames into the spatial localization 

of UAVs at the autolanding period. Deep learning 

supports a higher processing speed of target detection, 

and enables a greater accuracy promotion of vi-

sion-based positioning further. The overall algorithm 

has a great improvement in accuracy, robustness and 

real-time performance in comparison with the prior 

works. The contributions of this paper are summa-

rized as follows:  

(1) A light-weight convolutional deep neural net-

work model, namely BboxLocate-Net, is proposed 

and implemented to perform an initial coarse predic-

tion on spatial coordinates of the landing aircraft. The 

proposed BboxLocate-Net model solves the 

too-many-parameters-tuning problem existing in clas-

sic object detection deep networks and achieves a 

practical and effective balance between speed and 

accuracy.  

(2) A spatial motion continuity criterion is defined 

and fused into quantitative checking on the landing 

target detection, by taking full advantage of the 

high-speed rate of the light-weight detection network.  

(3) A key point regression network, namely 

PointRefine-Net, is developed to promote localization 

accuracy in the case that the flying vehicle’s motion 

continuity is checked unacceptable. Then, the 

self-correction of error detection is realized, and both 

robustness and accuracy are improved simultaneously. 

2.  Ground vision for UAV autolanding 

Aimed at runway taxiing and landing of medium 

aerial vehicles, a ground stereo vision-based system 

has been developed and updated for several 

times.10,14-18 Previous several corresponding mapping 
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algorithms to produce the spatial trajectory of the 

landing vehicle have also be testified via online ex-

periments supported by the on-ground vision sys-

tem.3,10,12,13 Here, we will review the ground vision 

system deployment and the overall workflow for the 

ground-to-air visual system. 

2.1 System architecture and deployment 

The ground stereo vision-based system usually 

works in the aircraft descending and taxing stages to 

guide it moving in the field of view to accomplish 

automatic landing. It usually consists of four modules: 

image capture module, target detection module, posi-

tion calculation module and data transmission mod-

ule.3,10 In the image capture module, two  

cameras are symmetrically installed on the independ-

ent Pan-Tilt Units (PTUs) to capture the landing se-

quential images. Each PTU with camera module 

works independently and has two degrees of freedom 

to expand the search scope. Each PTU is controlled, 

serves to track the landing target, and feeds the pitch-

ing and yawing angles backward. The target detection 

module and position calculation module are used for 

2D image target detection and 3D spatial location 

calculation, respectively. Both of them run on the 

same ground image processing computer. The data 

transmission module transmits the calculated spatial 

coordinates onto the onboard autopilot via wireless 

data link.

 

 

Fig. 1  Schematic diagram of ground stereo system for autonomous landing of the fixed-wing aerial vehicle.  

In real-scenario flights, a fixed-wing unmanned 

aircraft is guided into the view of the stereo camera by 

its onboard navigation system. Once the target is de-

tected, the ground-based guidance system switches 

from the waiting state to the working mode. Two 

cameras capture the vehicle landing images, and then, 

the captured sequential images and PTU parameters 

are transferred to the image processing computer 

which detects the key point of the flight target and 

calculates its spatial coordinates. Finally, the spatial 

coordinates are wirelessly transmitted onto the 

onboard autopilot to facilitate autonomous landing. 

 In terms of deployment details, we assume that t

he origin of the world coordinate system (x, y, z)

 is at the rotation center of the left PTU, from t

he practical viewpoint of the published works 3,10,1

3. The axis of the camera frame is parallel to tha

t of the PTU frame in the initial position. The ri

ght camera is mounted on the x axis, with the lig

ht center of the left and right cameras represented

 as , respectively. The baseline of the o

ptical system is . θ θ α α respectively r

epresent the tilt and pan angles. The anticlockwis

e measurement is positive. At the same time, the 
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hardware configuration is updated to be compatibl

e with the deep learning requirements. The captur

ed image is transferred to the 

 platform instead of the original control 

computer. The GPU component performs high-loa

d computations for flight target detection in seque

ntial images, while the CPU is responsible for inf

ormation-based positioning and wireless data trans

mission. 

2.2 Overall workflow of vision-based localization 

The ground stereo vision-based localization algorit

hm outputs the aircraft spatial coordinates during 

its autolanding process, while captured sequential 

images and camera attitudes are inputted online. 

Generally speaking, the overall workflow is comp

osed of image-based target detection and filter-bas

ed localization.  

On the basis of the system described in Section 2.1, 

the previous positioning algorithms have been devel-

oped and verified within simulation and experimental 

scenarios.3 The landing vehicle’s spatial coordinates 

are directly mapped by using the stereo measurement 

model, once knowing the target coordinates of the left 

as well as right images and the PTU attitude parame-

ters. In details, it assumes that the UAV actual coor-

dinate is (xw, yw, zw), and its coordinate on the left and 

right image plane is (ul, vl) and (ur, vr), respectively. f 

is the focal length of the camera. dx and dy are the 

pixel sizes in X and Y directions. RL and RR represent 

the rotation matrix of the world coordinate system 

relative to the left and right camera coordinate sys-

tems respectively. Then, the relationship of the coor-

dinate between the 3D world and 2D image plane is 

calculated by 
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The stereo vision algorithm processes the spatial 

coordinates one point by one point, so random dis-

turbance is inevitably involved in the outputted tra-

jectory under the mentioned principle of triangulation. 

Tang et al.3 proposed an extended Kalman filter esti-

mator to improve localization accuracy by fusing 

knowledge of aircraft motion continuity. Here, X= [xw, 

yw, zw, vx, vy, vz] T denotes state variables, and Y= [ul, 

vl, ur, vr] T means the observation values of detected 

target coordinates in images. By constructing the state 

observation equation Eq. (4) and the state estimation 

equation Eq. (5), the whole system state estimation 

process is completed through five recursive steps of 

extended Kalman filter. Real-scenario flight experi-

ments have demonstrated that this method is more 

robust and accurate than the triangulation-based lo-

calization algorithm.3 
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where F is a state transition matrix. Wk and Vk repre-

sent the system process noise and the observation 

noise respectively.  is the gain of the process noise. 

hk is the measurement matrix. ( | 1)
ˆ

k kX denotes the result 

predicted by the previous state. ( 1| 1)
ˆ

k k X is the optimal 

result of the previous state. ( 1| 1)
ˆ

k k Y means the optimal 

observation value of the previous state. 

Eventually, this article employs deep learning mod-

els into a fast and accurate detection on the autoland-

ing sequential images, since the pre-existing works 

need to be promoted with the processing rate and lo-

calization accuracy. Specifically, the proposed ap-

proach will be an original trial for the challenging 

scenario when the landing aircraft is partially out of 

the field of view. 

3. Deep learning models enabling accurate and

 fast detection 

.
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processing 

speed provides extra operations of motion continuity 

checking and coordinate correction for autolanding 

localization.

 

3.1. Two-hierarchy architecture of cascaded deep 

neural networks 

 

-

The detected bounding box certainly contains or 

covers the landing aircraft, but mismatching does ex-

ist between the detected box’s center and the actual 

image coordinates in either horizontal or vertical di-

rection. Such mismatching phenomenon often results 

in localization inaccuracy of the landing vehicle. It is 

even worse to lead to failure of the visual positioning 

task. Hereafter, we introduce a second-level network 

to optimize the accuracy of the vision-based localiza-

tion algorithm. Under such two-hierarchy architecture, 

the first level aims to estimate key point position ro-

bustly with few considerable errors, while the second 

level is designed to produce higher accuracy. 

The proposed cascaded deep learning detection 

method consists of four stages, as shown in Fig.2. In 

details, BboxLocate-Net represents the first-level 

network, and PointRefine-Net represents the sec-

ond-level network. In the first stage, an autolanding 

image dataset with annotations is conducted to train 

the coarse detection model BboxLocate-Net. It is fol-

lowed by a PointRefine-Net training process which 

takes lots of random small areas including key points 

as samples. In the third stage, the captured UAV im-

age is detected by BboxLocate-Net. In the fourth 

stage, the bounding box produced by the BboxLo-

cate-Net detection module is finally used by the point 

refinement module PointRefine-Net to obtain a more 

accurate estimation of the guiding target.  

s

3.2. Deep learning based target detection 

The goal of detection algorithm is to locate and 

classify the targets during the UAV autolanding pro-

cess. The detected objects are usually labeled with 

bounding boxes, category information and confidence 

score as well.  

Recently, there have been more and more research-

es on object detection. Faster R-CNN, 19 the two-stage 

proposal-driven CNN object detector, reaches great 

accuracy on many challenging datasets, while the 

processing speed is still a major concern. Facts show 

that Faster R-CNN is seldom an optimal solution for 

real-time flying vehicle detection. YOLO v3, 20 the 

one-stage detector, not only demonstrates promising 

results but also yields about 10 times faster detection 

speed. Experimental results demonstrate that its accu-

racy reduces by about 12% compared to Faster 

R-CNN, and it still can hardly achieve real-time de-

tection in the autolanding scenarios.  

Considering the balance between accuracy and 

processing time, this paper proposes a novel UAV 

object detection network named BboxLocate-Net 

which is designed to create a smaller-scale, faster, and 

more efficient deep neural model. Without increasing 

the network depth and width, we address this issue 

from a different perspective. Using DenseNet21 as a 

reference, we exploit the potential of the network 

through feature reuse and multi-scale fusion, and 

combine BboxLocate-Net as a feature extractor and 

YOLOv3 predictor. The BboxLocate-Net algorithm 

training and testing process are shown in Fig.2. 

We design BboxLocate-Net’s architecture based on 

the several principles of improving the real-time ca-

pacity and accuracy simultaneously. At first, reducing 

the network parameters is the key to improve the re-

al-time performance. It is inspired by the DenseNet21 

network to enhance the feature reuse between layers, 

full use shallow and deep information, and reduce the 

number of parameters. The proposed network intro-

duces a dense connection from one layer to all subse-

quent layers, developing a highly dense feature reuse 

connection among the five-layer feature maps. Dif-

ferent from DenseNet,21 we cascade the feature maps 

as the decreasing order of their resolution. In this 

study, it is named as “Ladder-Dense” connection.  

Then, the network is further designed to improve 

the detection accuracy. When the landing vehicle ap-

proaches and descends, the target is usually small and 

the background is relatively complex. The small target 

in the deep low-resolution feature map tends to be 

lost. To guarantee the accuracy of small-scale target 
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detection, an HRNet22 inspired approach is adopted to 

make full use of the information across all scales of 

the image, and reduce the loss of feature maps infor-

mation due to the decrease of image resolution. Such 

an HRNet-inspired network works with a 

high-resolution subnetwork as the first parallel path, 

and gradually adds the other low-resolution layer’s 

resolution-hold parallel path one by one. As a result, 

the parallel path explores the network potential while 

maintaining resolution. In the output part of the net-

work, a multi-scale fusion unit is deployed to cascade 

the information from all parallel subnetworks21 to 

capture and integrate information at all scales of an 

image. 

 

 

Fig. 2  Structure of detection model based on BboxLocate-Net and PointRefine-Net. 

  

Finally, considering the real-time performance and 

accuracy of the detection network, the proposed 

BboxLocate-Net is tested with excellent performance 

in specified datasets. It has been noted that HRNet 

and DenseNet, two state-of-the-art networks, have 

produced excellent performance in large-scale dataset 

detection tasks such as COCO23, ImageNet24 and 

VOC25. Specifically, the autolanding image datasets 

have only two classes of plane and background. The 

proposed BboxLocate-Net rightly achieves a balance 

between prediction accuracy and processing speed, by 

combining the advantages of DenseNet and HRNet 

together. 

During the detection process, each image captured 

from the ground cameras is resized to 320×240 to 

match BboxLocate-Net. Then, the 20×15×18 predic-

tion tensor is automatically generated through the 

feature extraction network BboxLocate-Net and the 

YOLO detection layer. Each of the 1×1×30 tensor 

includes the target location information: center coor-

dinates (x, y), width w, height h, category information 
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and confidence score c.20 After obtaining the confi-

dence c of each prediction box, a threshold will be set 

to remove the boxes with a score below. Then the 

remaining bounding boxes are filtered with the 

non-maximal suppression to obtain multiple sets of 

high-score bounding boxes. In particular, the 

YOLOv3 predictor uses a set of initial anchor boxes 

with fixed width and height to regress and predict the 

target position. Here, K-means clustering26 is adopted 

to determine the number and the best size of anchor 

boxes. As shown in Fig.3, three clustering centers are 

presented for the training dataset using K-means clus-

tering. The yellow box and the blue box respectively 

represent two benchmark anchor boxes with different 

sizes. The final red box predicted by BboxLocate-Net 

is calculated based on three anchor boxes. 
 

 
Fig. 3  Detection results based on multiple anchor boxes.  

The kernel task of the BboxLocate-Net network is 

to calculate the object confidence value, while predic-

tion on the width, height and central coordinates of 

the UAV target is concerned as well. For example, 

Loss values of aircraft detection generally include 

head frame coordinate loss Losscoor and confidence 

loss Lossconf. The calculation equation is as follows: 
 

coor confLoss(UAV) Loss Loss   (6) 

On one hand, Losscoor is quantitatively analyzed by 
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where obj

ijI denotes the possibility of a landing target in 

the j th anchor box of the i th grid; coord is the weight 

of positioning error, generally equal to 5; xi, yi, wi and 

hi represent the UAV bounding box coordinates, width 

and height which are detected in the i th grid, respec-

tively; ˆ
ix , ˆ

iy , ˆ
iw and ˆ

ih mean actual position parame-

ters from training data of the i th grid; S2 represents 

the total number of grids after passing through the 

network; B is the number of anchor boxes. 

On the other hand, the loss function of confidence 

Lossconf is quantified as 

   
2 2

2 2
obj noobj

conf noobj

0 0 0 0

ˆ ˆLoss
S B S B

ij i i ij i i

i j i j

I C C I C C
   

      
      

   (8) 

where λnoobj denotes the weight coefficient of confi-

dence error; Ci indicates the confidence of the target 

contained in the i th grid of all S2 grids; ˆ
iC represents 

the confidence parameter of the i th grid in the manu-

ally labeled data. 

3.3. Deep learning based accuracy promoting 

In the previous works of ground vision based auto-

landing, the detection rate of frames is not fast enough, 

so there is no extra time to make corrections or re-

finement to errors in the detection.3,13 In this paper, 

we propose a second-level point regression network to 

further optimize the target’s image coordinates. The 

above mentioned BboxLocate-Net greatly optimizes 

the speed of UAV target detection and provides the 

possibility for the implementation of motion continu-

ity check and coordinate correction. 

For practical applications, a criterion for checking 

the motion continuity is necessary to determine 

whether or not to conduct an accuracy promoting al-

gorithm. In this paper, we synthesize the distance and 

angle indexes into the motion continuity criterion. We 

define F (xi, yi) as the candidate point. P (x1, y1) and Q 

(x2, y2) denote the last two points of the UAV trajec-

tory, and |FQ| denotes the space distance between 

point F and point Q. Then when the following two 

conditions are satisfied at the same time, F is regarded 

as correct. Otherwise, it is confirmed to be mis-

matched and has to be corrected, so we have the fol-

lowing equation: 

 2 2 2

2 2 2| | ( ) ( ) ( ) 1.5 | |i i iFQ x x y y z z PQ        (9) 

 120PQF ∠  (10) 

  Then, once the output of the first-level network is 

checked as not acceptably continuous, the sec-

ond-level point regression network PointRefine-Net 

starts to run. PointRefine-Net is a key point regression 

network that is responsible for correcting the key 

point coordinates in a small ROI. The training sam-

ples are 9 small areas with different sizes and posi-

tions randomly captured near the key points of each 

picture. The network is mainly used to optimize the 

offset value (x, y) of the key point from the upper left 

corner of the area. In order to minimize the loss of 

key point coordinate offset, the convolution kernel 

parameters are updated iteratively by using the back-

ward gradient propagation algorithm. When the loss 

value is less than the threshold value 0.002, the net-

work stops training and we get the final point regres-

sion network model. Fig. 2(c) shows the training pro-

cess of the PointRefine-Net. 

The PointRefine-Net’s architecture is designed in 

the attempt to improving the real-time capacity and 

detection accuracy. Since the input of the second-level 

network is only a small part of the original image, we 

design a resolution preserving point regression net-

work. The feature extraction network is basically the 

same as the sequential path part of BboxLocate-Net. 

However, the difference between them is that the res-

olution of the first few layers changes from high to 
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low in BboxLocate-Net but stays the same in 

PointRefine-Net. In the shallow layers, for encourag-

ing feature reuse, the front layer of feature extraction 

network of PointRefine-Net uses dense connection. In 

the deep layers, to effectively process and consolidate 

features across scales, we choose to use a single pipe-

line with skip layers to preserve spatial information at 

each resolution which is proposed in Hourglass. 27 

Finally, the first five layers of PointRefine-Net are 

connected with Dense-connection, and the output part 

with Hourglass-connection27. Based on the structure, 

PointRefine-Net becomes a simple, minimal deep 

learning detection network that has the capacity to 

capture all of these features and bring them together 

to output pixel-wise predictions.  

In the process of key point detection, the input of 

PointRefine-Net is an inaccurate bounding box con-

taining UAV target detected by BboxLocate-Net net-

work. After the image resolution is resized to 30 × 30, 

the convolution operation is carried out. The output 

tensor only contains the key point coordinate infor-

mation (x, y). Fig.4 shows the optimization process of 

PointRefine-Net from the inaccurate bounding box 

detected by BboxLocate-Net to the accurate point. 
The red dot is a wrong detection result. The green dot 

indicates the corrected result. 
 

 

Fig. 4  Schematic diagram of error coordinate correction.  

The single task of PointRefine-Net network is to 

predict the key point coordinate vector. For a UAV 

head key point, Eq. (11) is the loss function of the 

head key point regression task. 
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   (11) 

where xi and yi represent the center coordinates of the 

predicted i th grid; ˆ
ix and ˆ

iy stand for actual position 

parameters from training data of the i th grid. 

3.4. Vision-based localization algorithm and workf

low 

Combining with  2.2 and the detailed desc

ription of the cascaded detection models, we are r

eady to present our overall localization algorithm 

flowchart. When actually detecting the UAV targe

t, first, the BboxLocate-Net network receives the 

complete image and predicts the bounding box co

ordinate of the UAV target. Then, combining with

 PTUs parameters, we calculate the UAV spatial 

position based on EKF-based object spatial localiz

ation algorithm3 and check the motion continuity. 

If the coordinate is identified as an error point, w

e take 

. Finally,

 PointRefine-Net can precisely correct the key poi

nt coordinates in this ROI. The details are shown

 in Table 1.  

4. Cascaded deep learning model based detecti

on experiment 

To evaluate the performance of the proposed novel 

target detection method, we compare the image detec-

tion results with the trajectory data collected in flight 

experiments. The data were obtained in a large num-

ber of UAV landing mixed images generated by a 

simulation platform and a real flight experimental 

platform. In addition, we design the following two 

groups of experiments to compare the proposed mod-

el with other classical detection algorithms in terms of 

real-time performance and detection accuracy. 

(1) The first experiment verifies the accuracy and 

real-time performance of BboxLocate-Net by com-

paring it with several classical deep learning target 

detection algorithms. 

(2) The second experiment analyses the detection 

accuracy of PointRefine-Net and BboxLocate-Net, 

and proves that the second level network has certain 

optimization ability for the results detected by first 

level network. 

4.1. Dataset and evaluation protocol 

Our previous research has successfully carried out 

several experiments under normal weather condi-

tions.3,10,13 To meet the requirements on learning sam-

ples, we present an upgraded version of our 

self-constructed dataset which includes images from 

our previous dataset and new extracted images cap-

tured by the simulation platform. The collection of 

dataset is divided into two parts: real-scenario image 

acquisition and simulation-scenario image acquisition. 

In the past work, a large number of UAV sequential 

landing images have been captured in the real flight 

experiments, and several volunteers annotated the 

sequential images to complete the construction of the 

real-scenario dataset. The simulation images are 

mainly collected in the simulation system, namely 

Airsim, in which we can simulate the whole process 

of UAV landing on the runway, and can simulate a 

variety of backgrounds, such as the sky, mountains, 

forests and so on. Different time conditions such as 

morning, evening, noon and dusk, and different 
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weather conditions including sunny, rain and snow 

can be set under the backgrounds. In the PX4 hard-

ware-in-the-loop simulation system, since the 3D 

model of UAV is known, we can achieve automatic 

target labeling by coordinate system transformation. 

Our new dataset not only contained a larger number of 

images but also was gathered in more challenging 

weather conditions (stronger wind smog and heavy 

snow). The UAV position can also be set up in the 

distance and attitudes to expand the diversity of data 

samples. The dataset used in the experiment is an in-

tegration of simulated and actual datasets, of which 

the mixed training dataset consists of actual training 

dataset and simulated dataset, totaling 13350 pictures. 

And the mixed validation dataset includes the actual 

validation dataset and the simulation validation da-

taset, with a total of 1500 pictures. For real-scenario 

flight application, we only test our algorithm on the 

actual flight dataset. 

 
Table 1  UAV target localization method based on cascaded deep learning models. 

UAV target localization method based on cascaded deep learning models 

Input. 

Captured images I 

PTU attitudes (yaw, pitch) 

UAV dataset with labels M 

Output.UAV localization coordinates (x, y, z) 

BL-Net and PR-Net training procedure： 

for batch in M: 

for Xi in batch: 

(1)  Obtain the BboxLocate-Net image label：Category C and Bbox coordinate (x, y, w, h), PointRefine-Net image 

label：key point coordinate (x, y). 

(2)  Initializing network parameters and forward propagation.  

while Xi = true do: 

    if Loss >= T: 

(A) Backward propagation.  

(B) Gradient descent with momentum. 

(C) Forward propagation, get Loss value. 

           else: Save model: obtain the BL-N and PR-N. 

        end 

end 

end 

Test procedure： 

Step 1. BboxLocate-Net image object detection. 

(A) Resize the captured image resolution to (320,240). 

(B) Forward propagation: predict Bbox coordinate (x, y, w, h). 

(C) Suppression Bbox of t0 < 0.6. 

(D) Non-maximum suppression. 

(E) Object detection result：Bbox center (u, v). 

Step 2. EKF-based object spatial localization algorithm and motion continuity judgment. 

(A) Get positioning result (x, y, z) from（u, v）and PTU attitudes (yaw, pitch). 

(B) Motion continuity judgment: 

if (x, y, z) is a wrong point： 

Go to Step 3：PointRefine-Net receives the key ROI (x, y, w, h). 

         else:  

Return the final positioning value (x, y, z). 

Step 3. PointRefine-Net image key point detection. 

(A) Resize the captured image resolution to (30, 30). 

(B) Forward propagation: predict key point coordinate (u, v). 

(C) Get positioning result (x, y, z) with EKF-based localization algorithm and return (x, y, z). 

 

In this section, four evaluation indexes are adopted 

to evaluate the performance of the cascaded deep 

learning networks. We use mean Average Precision 

(mAP) and frames per second (fps) to evaluate the 

proposed BboxLocate-Net model. And the perfor-

mance of PointRefine-Net is measured with the aver-

age detection error - “Mean Error” and the failure rate 

of each key point - “False Rate”. 

The above mentioned two evaluation indexes mAP 

and FPS both have clear meanings in the target detec-
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tion field. We will not define them here. The Mean 

Error defined in this paper is measured by  

 
  ˆ ˆ|| , ( , ) ||

MeanError 100%
BBox.w

u v u v
   (12) 

where (u, v) and ˆ ˆ( , )u v  are the ground truth and the 

detected position, respectively; BBox.w is the width of 

the bounding box detected by BboxLocate-Net. 

In order to evaluate the accuracy of network pre-

diction results, we define another indicator: False 

Rate. For the key point detection result of each frame, 

if the error is larger than 5%, it is considered the de-

tection result of this frame as a failure. This means 

that the key point position error in each direction 

cannot be greater than 5% of the target area. In a 

group of experiments, the key point detection accura-

cy is defined as the ratio of the number of key points 

detected failure to the total number of key points. 

4.2. BboxLocate-Net and PointRefine-Net training 

strategy 

In this study, we train BboxLocate-Net network 

based on open source framework Darknet and 

PointRefine-Net on Caffe. The testing facility is a PC 

device with 64 GB internal memory and Ubuntu 

14.04 operating system, i7-5930K CPU and NVIDIA 

GeForce GTX 1080ti GPU. 

In the training process of BboxLocate-Net, we used 

a batch size of 64, a momentum of 0.9, and a decay of 

0.0005. BN (Batch Normalization) is used to regular-

ize each time the weights are updated. Convolu-

tion-layer and pooling operations are used to extract 

features and generate tensors with specified size. In 

each forward prediction, the loss function is calculat-

ed in the detection layer, and the convolution kernel 

parameters are updated with the purpose of minimiz-

ing the loss value by the backward gradient descent 

algorithm. 

The initialization of PointRefine-Net parameters is 

the same as that of BboxLocate-Net. Its input image 

resolution is 30×30, and the batch size is set to 32. We 

also use small batch random gradient descent to opti-

mize network parameters. The network trains about 

150000 times in total, and stops training when the loss 

value was less than 0.002. 

4.3. BboxLocate-Net model based detection experi

ments 

High-precision target detection is the basis of 

high-precision positioning for stereo vision system. At 

the same time, the real-time performance of the detec-

tion algorithm is also the key factor for the system to 

be practical. 

To make a fair comparison between BboxLo-

cate-Net and other algorithms in real time and accu-

racy, we have trained all kinds of deep learning 

methods20,28-30 under the same conditions. Table 2 

summarizes the training parameters that we used for 

training the UAV detection model. The training details 

of the network are as follows. 

 

 

Table 2  Training parameters of five deep learning algorithms. 

Algorithm 
 

BboxLocate-Net YOLOv3 YOLOv3-Tiny YOLOv2-Tiny MobileNet-YOLO 

Input size (Pixel) 320×240 320×240 320×240 320×240 320×240 

Number of epochs 150000 150000 150000 150000 150000 

Batch size 64 64 64 64 64 

Initial learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 

Momentum 0.9 0.9 0.9 0.9 0.9 

Decay 0.0005 0.0005 0.0005 0.0005 0.0005 

Backbone  BboxLocate-Net Darknet-53 Darknet-21 Darknet-19 Mobilenets v1 

Using mixed landing dataset, we compared the 

proposed BboxLocate-Net detection results with that 

obtained by state-of-the-art CNN object detectors 

such as MobileNets-SSD29,30, YOLOv2-Tiny28, 

YOLOv320 and MobileNets-YOLO20,29. We use mAP 

and FPS as comparison indicators for these algorithms. 

The performance comparison of our algorithm and the 

existing state-of-the-art approaches is shown in Table 

3. Our approach is significantly better than Mo-

bileNets-SSD and YOLO v2-Tiny approaches. On the 

other hand, our tiny network, BboxLocate-Net, 

achieves an AP of 0.963 and FPS of 503. It outper-

forms most other algorithms, and is more efficient in 

terms of model size and computation complexity 

(GFLOPs). Fig.5 shows the partial detection results of 

different CNN detection algorithms.

Table 3  Comparison of mAP value and FPS at IoU = 0.5 of different CNN detectors. 

Algorithm Sunny Rain Snow 
Entire Dataset Processing rate (fps) 

8:00 12:00 17:00 8:00 12:00 17:00 8:00 12:00 17:00 

BboxLocate-Net 0.96 0.97 0.95 0.96 0.98 0.98 0.97 0.96 0.93 0.963 503 

YOLOv3 0.98 0.97 0.94 0.98 0.97 0.95 0.97 0.98 0.95 0.966 31.89 

YOLOv3-Tiny 0.93 0.94 0.95 0.91 0.94 0.92 0.94 0.95 0.91 0.932 221 

YOLOv2-Tiny 0.91 0.90 0.89 0.89 0.93 0.91 0.92 0.94 0.90 0.910 230 

MobileNets-SSD 0.91 0.93 0.92 0.94 0.91 0.92 0.89 0.91 0.94 0.919 289 

MobileNets-YOLO 0.89 0.91 0.89 0.91 0.94 0.91 0.92 0.93 0.94 0.916 291 
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Fig. 5  Test results of different CNN algorithms. 
 

4.4. PointRefine-Net model based detection experi

ments 

For the performance analysis of PointRefine-Net 

network, we take Mean Error and False Rate as eval-

uation indexes. In order to test the key point position-

ing effect in the algorithm, we synthetically analyzed 

the positioning results of six UAV key points and 

compared the detection results before and after 

PointRefine-Net. Fig.6 shows the comparison of the 

Mean Error and False Rate between PointRefine-Net 

and BboxLocate-Net when detecting six key points. 

Compared with BboxLocate-Net, the detection results 

of PointRefine-Net have improved the accuracy to 

some extent and can be used as a correcting network 

for error points. Fig.7 shows the comparison of sever-

al detection results before and after PointRefine-Net 

correction.  

 
 

 

Fig. 6  Comparison of detection results at 6 key points before and after coordinate correction. 

 

 

Fig. 7 Comparison of key point detection results before and after coordinates correction. 

5. Real-scenario flight localization experiments 

To comprehensively verify the performance of the 

algorithm in real-scenario flight, we designed the fol-

lowing two sets of flight experiments using the cas-

caded deep learning detection algorithm proposed in 

this paper and the EKF-based localization algorithm3 

as the solving algorithm. 

(1) Based on Chan-Vese algorithm, GOTURN al-

gorithm and BboxLocate-Net algorithm, the first 

group is used to calculate the UAV space trajectory, 

and to compare the accuracy and real-time capacity. 

(2) To prove the better accuracy and robustness of 

the system after the PointRefine-Net coordinate cor-

rection algorithm, the second group mainly compares 

the influence of PointRefine-Net coordinate correc-

tion algorithm and BboxLocate-Net algorithm on the 
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accuracy and robustness capacity. 

5.1. Real-scenario flight localization experiments s

etup 

 The real-scenario flight localization experiments 

are based on the ground-based visual system men-

tioned above. The runway baseline is about 10.77 m. 

The high-precision PTU is set on both sides of the 

runway and a visible light camera is fixed on the PTU. 

Each of PTU has two degrees of freedom to expand 

the search field. At the same time, the high position 

resolution (0.00625°) and high rotation speed (50 

(°)/s) make the positioning more accurate. 

 Specifically, for visible light camera, we selected 

the imaging source color CCD high-speed industrial 

camera, model DFK 23G618, which uses a CCD chip 

of SonyICX445AQA with a pixel resolution of 

640×480, a cell size of 3.2 mm. The lens of the vision 

system that we adopted is 60 mm. According to the 

pin-hole camera model, the size of the detection win-

dow is 42.67 m×32 m when the depth distance is 800 

m. For the medium-sized UAV used in the experiment, 

the wingspan of the UAV is 2.2 m, and its theoretical 

imaging pixel at 800 m is 32.99 pixels which can be 

effectively identified by our CNN model at this dis-

tance. The minimum target that our cascaded CNN 

algorithm can detect is 15 pixels, at which point the 

corresponding theoretical location distance can be 

calculated as 1762.5 m. However, because the height 

of UAV is only about 1/4 of its width, and there is 

water mist interference and light path consumption in 

actual use, an experiential guiding distance is set as 

800 m. The autolanding experiments are conducted in 

accordance with such specifications as well. 

To extend the field of view, we adopted precision 

PTU to actuate the camera, which is a two-axis gyro 

stable turntable from FLIR Corporation of the United 

States, PTU-D300. The turntable sends commands 

through a RS232 serial port, and feedbacks its own 

status online, including the turntable azimuth (pan) 

and pitch (tilt) angles. Its angle resolution is 0.006°. 

PTU-D300 is driven by a stepping motor and can 

meet the requirements of closed-loop tracking targets. 

The PTU has better vibration and impact resistance, 

and protection level of IP67. When the UAV flight 

speed is 30 m/s and the distance from the guidance 

system is 200 m, the required rotation speed of the 

turntable is 4.3 (°)/s, which is within the normal 

working range of the PTU. We installed the camera on 

the top bracketing, and the assembled individual vi-

sion system is illustrated in Fig.1. 

Finally, the target detection method mentioned in 

the paper is used to process the images collected by 

the two cameras, and then the positioning results are 

compared with the previous work. 

5.2. BboxLocate-Net model based localization exp

eriments 

(1) Experiment 1.1: Accuracy experiments without 

PointRefine-Net 

Fig.8 shows autonomous landing trajectories and 

localization errors in x, y and z directions. One trajec-

tory is calculated by EKF-based localization algo-

rithm. The blue trajectory is generated by DGPS as a 

reference trajectory, and the yellow, light blue and red 

ones are generated by Chan-Vese, GOTURN and 

BboxLocate-Net algorithms, respectively.3,13 The blue 

area, green area and yellow area in Fig.9 represent 

three stages of approaching, descending and taxiing in 

the landing process.  

The Root-Mean-Square Error (RMSE) in each axis 

using EKF is presented in the right of Fig.9. ex, ey and 

ez denote RMSE in x, y and z directions respectively. 

For the convenience of display, the error is displayed 

after taking ln(1+e). The error distribution curves for 

each axis calculated by EKF at different distances are 

shown in Fig.10.  

In Fig.10，when the y coordinate is less than 187 m, 

the deviation increases rapidly. This is due to the 

weak DGPS signal when the aircraft approaches the 

ground.  
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Fig. 8  Localization results using different UAV detection algorithms. 

 

 

Fig. 9  Accuracy comparison of spatial positioning results. 

 

 

Fig. 10  Localization errors in x, y and z directions for 

different distance conditions. 

By analyzing the two figures together, it is clear 

that the y axis direction error in the three stages is 

much greater than that in the x axis and z axis direc-

tions. This is due to the error characteristics of binoc-

ular vision. Since the y axis is parallel to the runway 

and the runway is long enough, a large y axis direction 

error does not affect the UAV landing process. Rela-

tive to y axis direction error, x and z axis direction 

error are critical for safe landing. Excessive x axis 

direction error may cause the UAV to deviate from the 

runway, while too large z axis direction deviation will 

cause the UAV to miss the landing point, which is 

prone to safety accidents. It can be seen in Fig.9 that 

the error of the x axis and z axis landing is within 0.3 

m in both the stage of approaching and the stage of 

descending. Only in the taxiing stage, the x axis direc-

tion error will reach a larger value, which is caused by 

the binocular calculation characteristics and the image 

target positioning error. Since the UAV has landed 

during the taxiing stage, a larger positioning error is 

acceptable.  

According to Fig.9, the BboxLocate-Net localiza-

tion algorithm reduces the deviation to some extent at 

all three axes, especially in the “Air&Ground” stage, 

the trajectory generated by BboxLocate-Net has a 

smaller deviation than that of Chan-Vese and 

GOTURN algorithm. To sum up, the localization ac-

curacy improvement owing to BboxLocate-Net local-

ization algorithm is practically significant for UAV 

autonomous landing. 
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(2) Experiment 1.2: Real-time capability experiments 

without PointRefine-Net 

The real-time performance of the algorithm has al-

ways been a key and common problem in practical 

engineering applications, and it is also our focus. 

We compare the frames per second (fps) of object 

detection with different algorithms, and these algo-

rithms are tested in the same equipment, which is a 

PC with i7-5930K CPU and 64 GB internal storage. 

The results are shown in Table 4. The detection speed 

of BboxLocate-Net can reach 500 fps, about 500 

times of Chan-Vese algorithm and 3 times of 

GOTURN algorithm. Compared with Chan-Vese al-

gorithm and GOTURN algorithm, our method has 

great progress in real-time capability.
 

Table 4  Processing rate with three different detection methods. 

Index Algorithm Processing rate (fps) 

T1 

Chan-Vese 

GOTURN 

BboxLocate-Net 

10.23±0.8 

172.56±2.42 

500.23±2.21 

 

5.3. Cascaded deep learning model based localiza

tion experiments 

(1) Experiment 2.1: Robustness capability experi-

ments with PointRefine-Net 

Another trajectory is shown in Fig.11. The image 

detection results at point D and F with large deviation 

in Fig.11 are shown in Figs.12 (a) and (b). It shows 

that the location error is mainly caused by the wrong 

image detection results. We conduct PointRefine-Net 

operation at points D and F. The light blue dot and 

yellow dot are the results before and after correction, 

respectively. And the light blue trajectory and yellow 

trajectory in Fig.12 respectively represent the posi-

tioning results before and after correction. We can see 

that PointRefine-Net shows better robustness than 

BboxLocate-Net algorithm. 

In Fig.11, the S area represents the case that part of 

the UAV goes out of the field of view. The detection 

results of four typical frames in S area are shown in 

Fig.13. G, H, I and J represent four typical frames 

which are out of the FOV in S area. Purple points are 

the detection results of Chan-Vese, red points indicate 

the detection results of GOTURN, and light blue and 

yellow points indicate the detection results before and 

after PointRefine-Net network respectively. When the 

target image coordinates out of the FOV, the compar-

ison of detection results also shows that PointRe-

fine-Net has a more robust performance. 

The reason why part of the wing is out of view is 

that the control accuracy of PTU is unsatisfactory. For 

analyzing the effect of PTU control accuracy error on 

spatial positioning, a Monte-Carlo method is used for 

quantitative evaluation on the effect of PTU control 

accuracy error on spatial positioning. Eventually, 

specified artificial servo errors are assumed added to 

the obtained PTU angles. We analyzed the positioning 

accuracy after incorporating 1 mrad and 2 mrad error 

perturbations into the left PTU true values, respec-

tively. When 1 mrad error perturbation is added, the 

errors in x, y and z direction at several specific dis-

tances are shown in Table 5. If 2 mrad error perturba-

tion is added to the left PTU, x, y and z direction er-

rors are shown in Table 6. The analysis results show 

that there is a large deviation between measurements 

and the GPS true values in the y distance and z dis-

tance when 2 mrad error is added. When the y dis-

tance is only 150 m, the height and distance errors are 

still 0.6 m and 3.176 m respectively, which makes it 

difficult to guarantee the accurate UAV guidance.
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Fig. 11  Comparison of localization results before and after PointRefine-Net. 

 
 

 

Fig. 12  Comparison of key point detection results before and after PointRefine-Net (PR-N) coordinate correction. 

 

 

 

Fig. 13  Key point detection results detected by four detection algorithms.  

 

Table 5  Analysis of positioning error under different y distance (1 mrad error perturbation). 

 

y (m) 
Measurement error (m) 

ex ey ez 

450 0.2152 18.364 1.5429 

350 0.1675 9.7402 1.2231 
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250 0.1060 5.6671 0.5221 

150 0.0682 2.3324 0.0653 

120 0.0344 2.0611 0.0413 

 

Table 6  Analysis of positioning error under different y distance (2 mrad error perturbation). 

 

y (m) 
Measurement error (m) 

ex ey ez 

450 0.4002 31.095 4.0012 

350 0.3298 22.253 3.1073 

250 0.2407 11.236 1.6323 

150 0.1325 3.1760 0.6425 

120 0.0998 3.0421 0.5514 

(2) Experiment 2.2: Accuracy experiments with 

PointRefine-Net 

The light blue and yellow trajectories in Fig.11 are 

generated by different detection algorithms but same 

localization algorithms. Same as above, blue is gener-

ated by DGPS, and light blue and yellow are generat-

ed by BboxLocate-Net (BL-N) and PointRefine-Net 

(PR-N) algorithm, respectively. Table 7 shows the 

comparison of RMSE with EKF at each axis between 

the two algorithms in actual landing experiments. It 

can be seen that the algorithm after PointRefine-Net 

has higher location accuracy.  

We also analyze the spatial positioning accuracy 

errors caused by detection pixel errors. Fig.14 shows 

the spatial positioning error changes in each coordi-

nate direction caused by target detection errors (0-30 

pixels) in U direction and V direction of image. We 

set up three cases of pixel deviation. As shown in 

Fig.14, the red point indicates that the pixel error in-

creases in the same value in the U and V directions, 

the yellow point indicates that the pixel error is con-

stant in the V direction and changes in the U direction, 

and the cyan point indicates that the error is constant 

in the U direction and changes in the V direction. It is 

obvious that with the increase of detection error, the Y 

direction error increases the fastest. This is because 

the baseline of the binocular vision system is much 

smaller than the distance from the binocular vision 

system during the UAV landing. 

 

(3) Experiment 2.3: Real-time capability experiments 

with PointRefine-Net 

We use the flight trajectory mentioned in Experi-

ment 2.1 to compare the localization speed before and 

after PointRefine-Net. The results are shown in Table 

7. BboxLocate-Net algorithm has better real-time ca-

pability, but PointRefine-Net algorithm has higher 

location accuracy while the real-time capability is 

kept in the same level. 

 
Fig. 14  Localization errors in x , y and z axis directions 

caused by different detection pixel errors. 

 

Table 7  RMSE with EKF at each axis of actual landing experiments and FPS before and after PointRefine-Net.  

Index Algorithm x (m) y (m) z (m) Processing rate (fps) 

T2 
BL-N without PR-N 0.2456 1.8082 0.1213 500.23±2.21 

BL-N with PR-N 0.2323 1.6002 0.1156 450.32±2.34 

6. Concluding remarks 

In this paper, a novel cascaded deep learning detec-

tion model has been proposed and developed for au-

tonomous landing of unmanned fixed-wing aerial ve-

hicles. A light-weight deep learning model enables a 

higher processing speed and makes the reasonable 

check and further optimization of UAV coordinates a 

reality. Flight experiment results validate that the ap-

proach attaches ~500 fps and higher positioning ac-

curacy than previous work. By making full use of the 

expansibility of the ground computing resources, we 

promote the visual guidance landing system to be 

practical. 

In the subsequent work, the developed algorithm is 

potentially extended to enabling detection and locali-

zation based on multiple key areas and key points. 
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This algorithm is also to be developed from vi-

sion-based position to pose (position-and-attitude) 

during the autolanding. In details, multiple anchors 

are to be detected simultaneously to support pose es-

timation then. 
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