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Abstract

In real-world industrial applications, learning to recognize novel visual categories from a few num-
ber of samples is challenging and promising. Although some efforts have been made in the academic
field for few-shot classification studies, there is still a lack of high-precision fine-grained few-shot
classification models in some specific fields, especially in the fine-grained agricultural field. As far
as we know, this study is the first work on meta-learning few-shot classification for fine-grained
plant disease classification (specific to disease severity). We propose a multi-perspective hybrid
attention meta-learning model based on a Batch Nuclear-norm constraint. The model explores
discriminative features by focusing on key regions, and the hybrid attention module is divided
into two sub-modules, soft attention model and patch-hard attention model. The discriminabil-
ity and diversity constraint module (DDCM) is introduced in the loss function to constrain the
Batch Nuclear-norm of the classification matrix, which improves the discriminative properties of
the classification model and increases its diversity at the same time. In this paper, a large number
of experiments have been carried out on multiple datasets. The experimental results demon-
strate that our work has better performance than state-of-the-art (SOTA) models. It can be
said that our work is a valuable supplement to the domain-specific industrial application models.
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1 Introduction

In recent years, we have witnessed significant
progress in computer vision thanks to advanced
computing devices and large-scale datasets [1, 2].
Deep convolutional neural networks (ConvNets)
are able to successfully learn robust feature rep-
resentations and achieve excellent performance in
recognition tasks, which benefits from large-scale
labelled training data such as Imagenet [3]. How-
ever, such supervised learning methods require a
large number of labelled samples and sufficient
iterations to train deep learning models and opti-
mize them. As the number of training samples
decreases, the performance of deep learning mod-
els degrades significantly. In particular, with only
one or a few labelled samples, it is difficult to apply
the model generalization to a novel category. How-
ever, when faced with poorly understood areas,
the human brain can draw connections between
new concepts and old knowledge to identify novel
objects [4]. As a result, the research topic of ”rec-
ognizing novel visual categories after seeing few
labeled samples” has came into being, which is
an important attempt to move A.I. towards true
”intelligence”. The research on this topic is often
referred to as ”few-shot learning”.

In practice, it is very difficult to obtain scarce
sample datasets in domain-specific scenarios. As
an important part of the national strategy, ”Smart
Agriculture” involves the study of ”plant state
recognition”, which is a typical few-shot learning
problem as shown in Figure 1. The rapid detec-
tion of plant diseases has serious implications for
the safety and sustainability of food production,
and is an important indicator for agro-ecosystems.
However, due to constraints such as low incidence,
high collection costs and difficulty in annotation,
very little labeled data on plant status are avail-
able. And in particular, accurate annotation of
complete plant disease datasets requires a lot of
time and expert manpower. It means that collect-
ing large-scale data is both difficult and expensive.
As a result, fine-grained few-shot model, which
is essential for solving domain-specific problems,
has emerged as one of the key topics in computer
vision research.

Currently, there are three main approaches in
scholarly research to solve few-shot classification
problems: model-based learning, optimization-
based learning and metric-based learning. These

Fig. 1 Brief illustration of fine-grained few-shot clas-
sification. Examples of 5-way 3-shot 1-query tasks on
fine-grained plant diseases. The current plant disease clas-
sification is only accurate to the disease category, and our
model can be refined to the disease severity, such as the
classification result ”Grape-balck rot fungus-serious” in the
figure.

learning methods differ from previous deep learn-
ing models in terms of classification and recog-
nition [3, 5, 6]. Among them, the metric-based
learning methods have achieved more advanced
research results in recent years. For example, Koch
et al. [7] proposed a Siamese network with shared
weights for a two-channel convolutional neural
network. Different images enter the dual chan-
nel separately, and the prediction is obtained by
calculating the distance of the output feature vec-
tor. The prototype network proposed by Snell et
al. [8] maps features to a prototype space. In this
space, the classification task can be accomplished
by calculating the distance to the prototype repre-
sentation of each class. The RelationNet proposed
by Sung et al. [9] integrates the feature vec-
tors of the support set and the query set, and
the relation module compares the two vectors
to determine whether they are matching cate-
gories. Bin Liu et al. [10] introduces a negative
margin loss to the few-shot learning based on
metric learning. The experimental results show
that the negative margin loss significantly outper-
forms the softmax loss. Jiangtao X et al. [11] first
introduces Brownian Distance Covariance, a prob-
abilistic and statistical-based similarity measure,
into deep learning to obtain more accurate simi-
larity by measuring the joint distribution between
sample pairs.

Inspired by the above research, we believe that
it is important to investigate the detailed relation-
ship between the features of the template image
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and the query image for fine-grained few-shot
image recognition. Starting with the feature rep-
resentation, it is essential to investigate a feature
extractor that is well trained to accurately repre-
sent the category features. Most existing few-shot
methods [7–11] focus on finding a suitable distance
metric or a meta-learning optimization strategy to
compare query images with labelled images. But
they barely notice that the key features of fine-
grained categories are highly localized and need
to be extracted with a relatively local receptive
field. For small sample task, focusing on local
features can filter out information about distract-
ing objects as well as the background. Limiting
the focus of model to where it is more needed
is an important means of preventing overfitting.
Based on the above observations, we propose a
multi-perspective hybrid attention model and a
patch-hard attention channel. In this way, we can
obtain more discriminatory information by getting
focal regions from both soft and hard attention
channels. Second, existing methods usually con-
strain only the discriminability of the classification
model in the loss function, while the diversity
constraint for rare categories is often ignored.
We introduce an additional discriminability and
diversity constraint module (DDCM) in the loss
function to classify fine-grained hard-to-classify
samples by constraining the Batch Nuclear-norm,
which improves both the discriminability and
diversity of the model by simultaneously con-
straining the matrix F -norm and the matrix
rank. Finally, for domain-specific fine-grained few-
shot classification problems, we further perform
practical applications in real-world tasks for Fine-
PlantVillage (FPV ), a fine-grained dataset, to
solve some novel or rare plant disease image
classification problems.

To summarize, the main contributions of this
paper can be summarized as follows:

• We propose a multi-perspective hybrid atten-
tion model (MPHAM) focusing on fine-grained
recognition, with the model divided into
instance-attention and region-attention subnets
internally (soft attention channels and patch-
hard attention channels externally). The two
sub-network focus on the global information
of the image from different perspectives, feed-
ing back a weighted attention feature map.

The focal area localization mechanism discov-
ers more local, fine-grained feature information
among objects.

• A discriminability and diversity constraint mod-
ule (DDCM) is introduced to improve the clas-
sification diversity of hard-to-classify samples
near the decision boundary with high data
density. The model is optimized in terms of
the discriminability and diversity of the clas-
sification matrix by constraining the Batch
Nuclear-norm.

• We conduct extensive experiments on the classi-
cal few-shot dataset mini -Imagenet and CUB to
prove the validity of our model. Further exper-
iments were conducted on a domain-specific
fine-grained few-shot dataset FPV for a real
plant disease classification problem. All exper-
iments demonstrate the better performance of
the model compared to current SOTA methods.

The rest of the paper is organized as fol-
lows. Section 2 summarizes related work on few-
shot learning, fine-grained image recognition, and
plant disease classification. Section 3 describes
the proposed MPHAM and DDCM methods in
detail, and then, Section 4 presents the experi-
mental setup, ablation experiments and analysis of
experimental results on different datasets. Finally,
Section 5 concludes the paper and provides an
outlook for future research.

2 Related Work

This section briefly introduces related research
areas to define and describe our own proposed
methods. First, it is introduced that the cur-
rent research status of plant disease classification
algorithms, and then, two closely related areas:
few-shot learning and fine-grained recognition are
introduced. Finally, we review related studies and
present our proposed solution.

2.1 Plant Disease Classification

Plant Disease Classification. Deep learning
has made significant achievements for a wide range
of intelligent perception tasks such as classifica-
tion, detection and segmentation, which has led to
its widespread use in agricultural scenarios. Deep
learning-based recognition algorithm significantly
improves the accuracy of plant pest and disease
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detection. In 2018, Ferentinos et al. [12] open-
sourced a plant disease dataset of 87848 images for
58 diseases of 25 plant species and achieved 99%
classification accuracy using convolutional neu-
ral networks (CNN) structures. In 2019, Selvaraj
et al. [13] achieved 94.1% accuracy for pest and
disease detection of banana using Faster RCNN
model. In 2021, Aboneh T et al. [14] developed a
wheat disease classification system based on the
VGG19 model that achieved 99.38% accuracy in
classifying wheat image data collected from the
Bishoftu region.

The deep convolutional neural networks men-
tioned above usually require thousands of labeled
examples of each class to achieve good recogni-
tion results. However, in practical applications, it
is impractical to collect large amounts of labeled
samples. Especially for uncommon diseases, often
only a few or dozens of disease images can be
collected, which cannot reach the number of sam-
ples required for deep network training, resulting
in insufficient training of the network and poor
generalization effect. Although the number of
training samples can be reduced to some extent
by migration learning, it cannot solve the problem
of easy overfitting of the model due to train-
ing with a small number of samples. Humans, by
contrast, can quickly identify a new category of
objects. Inspired by such strong learning ability,
researchers have proposed the concept of few-shot
learning, which can have the ability to learn from
a small number of data samples like humans do.

2.2 Few-shot learning

Convolutional neural networks typically require
thousands of labeled samples per class to achieve
the required performance. However, it is imprac-
tical to collect large amounts of annotated data,
especially for domain-specific industrial applica-
tions that require specialized knowledge. Some
researchers have started to focus on few-shot
visual classification studies.
Optimization-based few-shot learning. The
parameter optimization-based approach learns a
general strategy for fast parameter optimization
that finetunes or predicts the learner parameters
for each specific few-shot learning task. Santoro
et al. [15] trained a cross-task meta-learner that
can quickly and accurately update the param-
eters in the model. Finn et al. [16] trained a

model-independent meta-learner and found initial
parameters adapted to various tasks with simi-
lar distributions, which can be quickly generalized
to new tasks with few training samples by set-
ting the initialization parameters obtained from
learning. Ravi and Larochelle [17] proposed a
meta-learning model based on a long short-term
memory network (LSTM) to learn the general
initialization and the update rules of classifier
parameters. Momin Abbas et al. [18] proposed a
sharpness aware Model-Agnostic Meta-Learning
(MAML) method using sharpness aware mini-
mization to avoid the loss function from falling
into local optimum as much as possible.
Metric-based few-shot learning. The metric
learning-based approach is a classification method
that measures the similarity between the query
image and the support image by learning the
embedding function. During the testing period,
the nearest neighbor method was used to clas-
sify new categories in the embedding space, where
samples with the same categories were closer than
that with different categories. Snell et al. [8] pro-
posed a prototypical network (Proto-Net) to learn
the prototypes of each category and classify them
by computing the Euclidean distance between the
query image and the prototype in the embed-
ding space. Unlike the Proto-Net which manually
selects fixed metrics (e.g., cosine and Euclidean
distance), the RelationNet [9] uses a nonlinear
comparator for learning and directly compares the
metric distance between the query image and the
support image in the embedding space. A Meta-
Baseline method was proposed by Yinbo Chen
et al [19]. The method pretrains the classifier on
all base classes and performs meta-learning on a
metric-based few-shot classification algorithm.

2.3 Fine-grained image recognition

Fine-grained image classification faces the chal-
lenge of small differences among subclasses and
large differences among images within classes. It
is dedicated to solving the fine-grained analysis
problem in image classification. The current main-
stream approach is to first locate the most discrim-
inative region in fine-grained images, and then
classify it using the local features obtained [20–22].
Multi-attention CNN (MA-CNN) [23] learns fine-
grained features better by cross-training two sub-
networks. In view of the fact that region detection



Springer Nature 2021 LATEX template

Article Title 5

and fine-grained feature learning are independent
of each other in the existing fine-grained meth-
ods, Fu et al. [20] proposed a multiscale recurrent
attention convolutional network that recursively
learns discriminative region attention and region-
based feature representations by mutual reinforce-
ment. To classify fine-grained vision objects in
multiple regions, Shen Chen et al. [24] proposed a
Context-aware Attentional Pooling (CAP), which
can help the model better learn the visual features
of each part of the object.

Summarizing the research status in the above
fields, we can see that deep Conv-Nets have
made remarkable achievements in a wide range of
visual tasks [2, 12–14, 20–24]. However, obtaining
reliable discriminative representations and good
model generalization for fine-grained few-shot
image classification is still a rather challenging
problem. Different from these methods, this paper
incorporates a multi-perspectives hybrid attention
model (MPHAM) into the feature extractor based
on a few-shot learning approach, so that the fea-
ture extractor focuses more on salient regions and
avoids losing useful information. Also, a discrim-
inability and diversity constraint module (DDCM)
is introduced in the loss function section to bet-
ter measure the distance between two fine-grained
images and to effectively improve the classification
diversity.

3 Proposed Method

Problem definition. According to the standard
definition of few-shot classification task[8, 9, 25,
26], we divide the plant disease dataset into a base

class dataset Dbase = {(xi, yi)}Ni=1 and a novel
class dataset Dnovel , where xi is an image sample
and yi is the truth label of xi, Dbase

⋂
Dnovel = ∅,

and N denotes the total number of images. To
accomplish an C-way K-shot Q-query task, a sup-
port set S and a query set Q are partitioned within
the dataset:

S = {(xsi , y
s
i )}Ns

i=1 (Ns = K ∗ C)

Q = {(xj , yj)}Nq

j=1

(1)

where K denotes K images with labels and C
denotes the number of novel classes. A few-shot
task defined in this way is called a C-way K-shot
setting.

Overall framework. Few-shot classification net-
works usually contain a feature extractor and a
predictor. In order to improve the fine-grained
classification capability of hard-to-classify sam-
ples near the decision boundary with high data
density and enhance the feature extraction capa-
bility, a novel few-shot classification model is
proposed in this paper. Our approach is outlined
in Figure 2, which mainly consists of a multi-
perspective hybrid attention module (MPHAM)
and a predictor for improving discriminability and
diversity: the DDCM module. The internal mod-
ule of MPHAM includes an instance attention
module and a region attention module, which
focuses on the global information of the image
from different perspectives. The external mod-
ule of MPHAM is divided into soft attention and
patch-hard attention channels, which are later
docked to the DDCM module for final result pre-
diction and to enhance the discriminability and
diversity of classifiers. The whole network is based
on convolutional units and measurement function,
which can be trained end-to-end, and the details
of each component are described below.

3.1 Multi-perspective hybrid
attention module

The commonly used feature extraction backbone
networks (e.g., ResNet [27], VGG [5], etc.) have
achieved excellent results on general classification
problems. However, the results of these networks
on few-shot classification tasks are not satisfac-
tory. Existing methods are particularly ineffective
when faced with fine-grained image recognition
problems (e.g., plant disease classification). There-
fore, the network with a classical classification
backbone as the feature encoder can’t meet the
requirements of fine-grained image recognition.

In this paper, we integrate the multi-
perspective hybrid attention module (MPHAM)
into the feature encoder to improve the adaptabil-
ity of the model and realize the attention fusion
of region and channels. Finally, an attention-
based feature encoder is constructed. As shown
in Figure 2, MPHAM considers the features
extracted by the backbone network as prior knowl-
edge of the subsequent attention-based learning
network, and then focuses on the global infor-
mation of the image from different perspectives
using instance attention and region attention. The
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Fig. 2 Illustration of proposed framework on a 5-way 1-shot fine-grained plant disease classification task. We first use the
backbone network for feature extraction, and then refine the extracted features by focusing on the discriminative regions
with a multi-angle hybrid attention module(MPHAM). In loss function part, we introduce the discriminability and diversity
constraint loss (DDCM), which effectively improves the classification accuracy of hard-to-classify samples.

attention module doesn’t require separate pre-
training for it, simplifying the training process.
The detailed structure of MPHAM is shown in
Figure 3, which contains two modules: instance
attention module and region attention module,
and the two attention modules are connected in a
tandem manner. It helps the network to extract
the dataset feature distribution effectively.
Instance attention module. Instance attention
can tell the model which channel is worthy of spe-
cial attention. We assume that the input feature
map of the network is P ∈ RC×H×W . Firstly,
global average pooling (GAP) and global maxi-
mum pooling (GMP) are executed to aggregate
spatial information of a feature map. Then two
1 x 1 x C feature maps are generated: Pc

avg and
Pc

max. Secondly, these two feature maps are fed
into the multi-layer perceptron (MLP) separately,
and shares MLP parameters. Then, the two fea-
ture maps are added together and the weight
coefficients between 0 and 1 are obtained by the
sigmoid function σ. Finally, the weight coefficients
are then multiplied with the input feature map to
get the final weighted feature map βc.

βc = σ(MLP(Avg Pool(P )) + MLP(MaxPool(P )))

= σ
(
W 1

(
W 0

(
P c

avg

))
+ W 1 (W 0 (P c

max))
)
(2)

where σ denotes the sigmoid function. W 0 and
W 1 are the parameters to be learned in the MLP
network.

For 1-shot task, βc is the final prototype
representation. For 5-shot task, the five feature
maps are weighted and summed to obtain a pro-
totype representation ξ that summarizes all the
information of a certain class.

ξ =

5∑
i=1

βc
iXi (3)

where X = [x1, . . . , xn] is the image feature
extracted by feature extractor. Xi represents the
feature of the ith image.
Region attention module. We introduce the
region attention module to focus on which part
of the spatial dimension has more significant fea-
tures. We aggregate the high-order integration
information of a feature map by using the average-
pooling and max-pooling operations, and then
stitch the two feature maps together in the channel
dimension. The processed feature maps then pass
through a convolution layer with a convolution
kernel of 7 x 7 and reduce to 1 channel, while keep-
ing H and W unchanged. Finally, like the instance
attention module, the region weight coefficients
are generated by the sigmoid function σ, and then
multiplied with the input feature map to obtain
the final weighted feature map βs ∈ RH×W .
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Fig. 3 The proposed multi-perspective attention module (MPHAM). (a) Illustration of the instance attention module (b)
Illustration of the region attention module.

βs = σ (([AvgPool(SP ); MaxPool(SP )]W 2 + b2))

= σ
(([

SP s
avg ; SP s

max

]
W 2 + b2

))
(4)

where SP indicates the input feature map of the
spatial attention module, σ denotes the sigmoid
function, and W 2 and b2 are the parameters to be
learned in the network.

For 1-shot task, βs ∈ RH×W is the final pro-
totype representation. For 5-shot task, the five
feature maps are weighted and summed to obtain
a prototype representation ψ that summarizes all
the information of a certain class. Xi represents
the feature of the ith image.

ψ =

5∑
i=1

βS
i Xi (5)

Patch-hard attention channel. In the soft
attention mechanism, all information is re-
weighted in an adaptive manner before being
aggregated. Compared to the soft attention mech-
anism, hard attention selects only a portion of the
information and processes it further. Hard atten-
tion can improve accuracy and learning efficiency
by focusing computation on the important parts
of an image and ignoring some redundant infor-
mation. The proposed patch-hard attention in this
paper processes only the part of information that
is considered to be the most relevant. For the
specific implementation, the few patches with the

highest average response in the weighted feature
map are retained and the lower weighted patches
are masked. Then the hard attention weighted
feature map is generated.

Specifically, each weighted feature map βs ∈
RH×W generated by region attention model is
divided into 9 patches evenly. Then the k regions
with the highest weight response are retained, and
the rest of the patches are masked. Assuming that
the weights sum of each patch is Wp, the k patches
finally retained can be expressed as PR:

PR = {top k (Wp) , k ∈ (1, ..., 9)} (6)

3.2 Discriminability and diversity
constraint module

In migration learning tasks, the target domain
often leads to the existence of some indistin-
guishable similar data near the decision boundary
due to the lack of labels. In order to deal with
this problem, we analyze the batch classification
matrix A and hope to optimize it in terms of
discriminability and diversity.
A. Measuring Discriminability with F -
norm.

Suppose the prediction matrix of the model for
a batch data is A ∈ RB×C , where B and C denote
the batch size and the number of categories,



Springer Nature 2021 LATEX template

8 Article Title

respectively, and satisfies:

C∑
j=1

Ai,j = 1 ∀ i ∈ 1 . . . B

Ai,j ≥ 0 ∀ i ∈ 1 . . . B, j ∈ 1 . . . C

(7)

For classical classification models with suffi-
cient samples, a good performance classification
matrix A can be obtained by training a suffi-
cient number of labeled samples. However, when
there are insufficient labels, there are often many
ambiguous samples near the decision boundary
that are easily misclassified. Existing methods
usually optimize the prediction results for unla-
beled samples by increasing discriminability [28].
It has been shown in [29] that maximizing the
F -norm of A can constrain the model prediction
discriminability. The optimization objective can
be expressed as:

∥A∥F =

√√√√ B∑
i=1

C∑
j=1

|Ai,j |2 (8)

∥A∥F is the F -norm of classification matrix A,
which has strict opposite monotonicity with the
entropy H(A). The classification discriminability
can be improved by maximizing ∥A∥F in the loss
function.
B. Measuring Diversity with Matrix Rank.

It is normal for some categories to have a
majority of samples in a randomly selected batch
of samples, while other categories contain fewer or
even no samples. In this case, the model trained
using entropy minimization or F -norm maximiza-
tion tends to classify samples near the decision
boundary as the majority class. The continuous
convergence to most categories reduces the diver-
sity of predictions, which is detrimental to the
overall prediction accuracy. To improve classifica-
tion accuracy, unlike other methods [30–33], we
aim to maintain predictive diversity by analyzing
the batch output matrix A.

Since the data of each batch is randomly sam-
pled, the expectation of category in each batch
should be stable. Noting this property, we can con-
strain the diversity by constraining rank(A) (the
rank of the classification matrix A) to be maximal.
It prevents the predictions of the model from col-
lapsing to the majority category. But the rank of

the matrix is difficult to optimize directly, which
is an NP-Hard problem.
C. Batch Nuclear-norm Maximization.

In order to be able to constrain both dis-
criminability and diversity, we find that there
is a relationship between the nuclear-norm ∥A∥∗
and the rank of matrix ∥A∥F . In [34–36] , this
relationship can be expressed as:

1√
D
∥ A∥∗ ≤ ∥A∥F ≤ ∥A∥∗ ≤

√
D · ∥A∥F (9)

where D = min(B,C). This shows that ∥A∥∗
and ∥A∥F can be bounded to each other. Then it
is natural that

∥A∥∗ ≤
√
D · ∥A∥F ≤

√
D ·B (10)

Therefore, maximizing ∥A∥∗ can force ∥A∥F
to maximize, which in turn makes the model
predictions both discriminative and diverse.

Figure 4 shows the classification compari-
son between Entropy Minimization (EntMin) and
DDCM when processing the same classification
matrix A. Compared with the previous Ent-
Min, this classification matrix is constrained by
DDCM with batch nuclear-norm maximization to
obtain more accurate classification results, which
improves the classification diversity.

3.3 Loss Function Fusion

The proposed framework shows that the atten-
tion channel is divided into a patch-hard attention
channel and a soft attention channel. The patch-
hard attention channel aims to improve discrim-
inability by concentrating on a few representative
regions, which are later constrained by DDCM.
The soft attention channel covers the full feature
map and uses both DDCM loss and cross-entropy
loss as the final optimization loss function for this
channel.

In the task, we are given labeled domain DL

and unlabeled domain DU . Classification results
are obtained by the deep network G (xi). For a
randomly sampled batch BL example

{
XL, Y L

}
on a labeled data set, where XL denotes the sam-
ple with label, Y L denotes the label corresponding
to the sample. The classification loss on DL can
be calculated as:
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Fig. 4 Comparison of classification effects of DDCM and
Entropy Minimization (EntMin). In the figure, the two cat-
egories of the examples are Class 01 and Class 02. Batch
Matrix A is the original classification matrix, and two new
classification matrices are generated by DDCM and Ent-
Min. The dark green (red) represents the increase of green
(red) variable. H (A) represents the entropy value and ∥A∥∗
represents the value of nuclear-norm.

Lcls =
1

BL

∥∥Y L log
(
G
(
XL

))∥∥
1

(11)

On the unlabeled domain, the DDCM loss is
applied to the classification matrix. For a ran-
domly sampled batch BU example

{
XU , Y U

}
,

the classification matrix on DU can be denoted
as G

(
XU

)
. The loss function of DDCM can be

expressed as:

Lddcm = − 1

BU

∥∥G (
XU

)∥∥
∗ (12)

To train the network, for the soft attention
channel we optimize both the classification loss
and the DDCM loss, Lcls and Lddcm can be
optimized simultaneously and combined with the
parameter λ as follows

Lsoft =
1

BL

∥∥Y L log
(
G
(
XL

))∥∥
1
− λ

BU

∥∥G (
XU

)∥∥
∗

(13)
For the patch-hard attention channel, we only

optimize the DDCM loss to increase its discrim-
inability, whose loss function is expressed as:

Lpatch−hard = − 1

BU

∥∥G (
XU

)∥∥
∗ (14)

The overall loss is expressed as:

Lall = Lsoft + Lpatch−hard (15)

4 Experimental result and
analysis

4.1 Experiments

This paper focuses on the fine-grained few-shot
classification task. In order to reasonably evalu-
ate the effect of the prosed model, several different
experiments are designed on few-shot classifica-
tion datasets such as the mini -ImageNet [37]
and Caltech-UCSD-Birds [38] datasets. Then it is
applied to a modified fine-grained plant disease
classification dataset: FPV. FPV is created based
on PlantVillage (PV ) and contains 10 species with
27 diseases. Each image is marked with a label
accurate to the severity of the disease, which for-
mat is ”plant-disease-severity”, and is subdivided
into 61 species. This dataset is a more fine-grained
dataset than the original PV dataset, as shown in
Figure 5.

In the ablation experiments, this paper veri-
fies the effect of the combination of HPHAM and
DDCM, through a series of combinations of exper-
imental modules. First, for the internal submod-
ules of HPHAM: instance-attention and region-
attention, ablation experiments are performed to
verify the effectiveness of the two modules when
connected in series. Second, patch-hard atten-
tion channel is treated as an attention module
independent of MPHAM to carry out combinato-
rial experiments, verifying its superiority. Finally,
DDCM is also integrated into the experiment as
a configuration module, and the simultaneous use
of each module achieves SOTA effect.

In the experimental results and analysis
section, with the n-way k-shot experimental setup,
experiments are conducted under uniform param-
eter settings to compare the superiority of the
proposed method over SOTA methods. In each
experimental evaluation, C categories (C-way) are
randomly selected in a given test domain, and then
N images from each category are selected as the
support set (N-shot, a total of C*N images) and M
images as the query set (a total of C*M images).
5-way 1-shot and 5-way 5-shot are selected to eval-
uate the model. The division of base class and
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Fig. 5 Example of classification tasks for coarse-grained PV dataset and fine-grained FPV dataset. (a) The left side of
the figure shows the coarse-grained categories in the format ”plant-disease”, and (b) the right side shows the fine-grained
categories in the format ”plant-disease-severity”. The left and right images are identical, but the categories are completely
different at different fine-grained levels.

novel class in CUB and mini -Imagenet is the same
as that in [8, 17, 25]. In FPV, 30 classes are
selected as base classes, and the rest are classified
as novel classes. The model evaluation metrics are
aligned with the mainstream metrics [8, 10, 19].

4.2 Implementation Details

ResNet12 [27] is serving as the feature extractor
backbone. The original support images are uni-
formly adjusted to 84×84 and sent to the feature
extractor to form robust feature vectors. Momen-
tum and learning rate are set to 0.9 and 0.001
respectively. The model was trained over 5000 iter-
ations. All experiments are conducted by PyTorch
on NVIDIA 2080 Ti GPU. To reasonably measure
the model performance, we use the top-1 accuracy
as an evaluation metric.

4.3 Ablation Studies

During the ablation experiment, ResNet12 is used
as the basic backbone of the feature encoder. The
modules to be configured include the MPHAM,
the patch-hard attention channel and DDCM. It
should be reminded that patch-hard attention
channel is only a sub-module of MPHAM. But
when conducting ablation experiments, they are
treated as two ”separate” modules.

As shown in Table 1, in the classification task,
if the module is added then mark (

√
) the appro-

priate place in the table, otherwise leave it blank.
Several marks (

√
) means that several modules are

used at the same time. Since the patch-hard atten-
tion channel is dependent on the hybrid attention
module, it cannot be used as a separate module
without MPHAM. Therefore, when the modules
are combined, the patch-hard attention channel
does not appear alone. The baseline values in the
table are the results of the Meta-Baseline [19].
The influence of Instance/Region attention
module. The hybrid attention module consists of
two parts: the instance attention sub-module and
the region attention sub-module. Table 1 presents
the classification results in the test set. The model
using the individual attention module alone per-
forms better than the one without the hybrid
attention module. It demonstrates the effective-
ness of both attention submodules. The instance
attention module can adaptively fuse high-order
information to generate better class prototypes,
while the region attention module can adaptively
select perceptual fields to extract more effective
image features. Meanwhile, the combination of the
instance attention module and the region atten-
tion module (i.e., hybrid attention) utilizes the
advantages of both high-order integration and
one-order location. It can be concluded that the
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Table 1 Few-shot results (5-way 1-shot) of proposed model with different settings of attention mechanism. Best results
are displayed in boldface. Numbers are in percentage.

Baseline Instance-A Region-A mini-ImageNet CUB FPV

√
67.04 ± 0.63 77.21 ± 0.63 76.25 ± 0.41√ √
67.25 ± 0.42 78.31 ± 0.58 78.77 ± 0.35√ √
67.12 ± 0.28 78.22 ± 0.60 78.51 ± 0.46√ √ √
68.25 ± 0.44 78.71 ± 0.65 79.02 ± 0.35

Table 2 Ablation study of 5-way 1-shot on few-shot classification. Best results are displayed in boldface. Numbers are in
percentage.

Baseline HAM Patch-HA DDCM mini -ImageNet CUB FPV

√
67.04 ± 0.63 77.21 ± 0.63 76.25 ± 0.41√ √
68.25 ± 0.44 78.71 ± 0.65 79.02 ± 0.35√ √
67.32 ± 0.34 78.25 ± 0.65 78.77 ± 0.46√ √ √
68.31 ± 0.31 78.77 ± 0.36 79.21 ± 0.38√ √ √
68.48 ± 0.26 79.07 ± 0.46 79.65 ± 0.46√ √ √ √
68.75 ± 0.30 79.48 ± 0.47 79.84 ± 0.33

combination of these two modules achieves the
best performance.
The influence of MPHAM. The experimen-
tal results based on the multi-perspective hybrid
attention module demonstrate that the attention
module has significantly improved the classifi-
cation results on the fine-grained dataset CUB
and the fine-grained disease classification dataset
FPV, with the improvement of classification accu-
racy by about 1.5% and 2.7%, respectively. Mul-
tiple experimental results on all three datasets
show that the MPHAM benefits both fine-grained
classification task and coarse-grained classifica-
tion task. Figure 8 shows the focusing effect of
attention module.
The influence of Patch-hard attention mod-
ule. The patch-hard attention module can only
appear based on the hybrid attention module,
so it does not appear alone. Based on Experi-
ments 2, 4, 5 and 6 in Table 2, it is observed
that after adding patch-hard attention channel
to HAM, the model has better performance on
fine-grained classification datasets. Experiments 5
and 6 show that the addition of the patch-hard
attention channel improves the model accuracy by
0.27% (mini -Imagenet), 0.41% (CUB) and 0.19%
(FPV ) compared to the case with only the hybrid
attention module.

The influence of DDCM. The discriminability
and diversity constraint module (DDCM) appears
in the model as a constraint on the original loss
function. It can be seen that DDCM already
brings some improvement to the model perfor-
mance when it appears alone in Experiment 3.
And when it is combined with the hybrid atten-
tion module and patch hard attention channel
in Experiment 6, it shows a greater performance
improvement and achieves the best accuracy.

In summary, a series of ablation experiments
on the proposed method in this paper verified
the positive impact of each module on the perfor-
mance of fine-grained classification.

4.4 Comparison with
state-of-the-arts

By ablation experiments and analysis, it has been
validated that each component in the model has
performance advantages.

Next, to demonstrate the optimization capa-
bility of the model in this paper, a series of exper-
iments are performed on the mini -ImageNet [37]
and CUB [38]. 5-way 1-shot and 5-way 5-shot are
selected to evaluate the model. Table 3 shows the
comparison results of this method with the most
advanced method under each dataset.
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Table 3 Comparison of the state-of-the-art few-shot classification algorithms on the mini-ImageNet and CUB dataset.
The best results are highlighted in bold.

Methods
miniImageNet CUB

5way1shot 5way5shot 5way1shot 5way5shot
Optimization-based

MAML [16] 57.40 ± 0.47 72.42 ± 0.65 70.44 ± 0.55 85.50 ± 0.33
Metric-based

Matching N [25] 59.30 ± 0.44 72.63 ± 0.36 78.33 ± 0.45 88.98 ± 0.26
Relation N [9] 54.12 ± 0.46 71.31 ± 0.37 73.22 ± 0.48 86.94 ± 0.28

Prototypical N [8] 56.13 ± 0.45 75.70 ± 0.33 74.35 ± 0.48 88.50 ± 0.25
Baseline [39] 60.00 ± 0.44 80.55 ± 0.31 71.85 ± 0.46 88.09 ± 0.25

Baseline++ [39] 63.25 ± 0.44 81.67 ± 0.30 75.25 ± 0.45 89.85 ± 0.23
Meta-Baseline [19] 64.17 ± 0.45 81.41 ± 0.31 78.16 ± 0.43 90.04 ± 0.23
Neg-Margin [10] 61.70 ± 0.46 78.03 ± 0.33 78.14 ± 0.46 90.00 ± 0.24

FEAT [40] 66.78 ± 0.20 82.05 ± 0.14 77.53 ± 0.83 89.79 ± 0.28
BML [41] 67.04 ± 0.63 83.63 ± 0.29 77.21 ± 0.63 90.45 ± 0.36

DeepEMD [42] 65.91 ± 0.82 82.41 ± 0.56 75.65 ± 0.63 88.69 ± 0.50
DeepBDC [11] 67.83 ± 0.43 84.45 ± 0.29 79.01 ± 0.42 90.42 ± 0.17

Ours 68.75 ± 0.44 85.25 ± 0.32 79.48 ± 0.47 91.05 ± 0.26

Table 4 Few-shot results with different settings of backbones. Best results are displayed in boldface. Numbers are in
percentage.

Methods Backbones
mini-ImageNet CUB FPV

5way1shot 5way5shot 5way1shot 5way5shot 5way1shot 5way5shot

Baseline [39]
conv4 46.06 ± 0.39 65.83 ± 0.35 47.73 ± 0.41 68.77 ± 0.38 46.24 ± 0.30 66.50 ± 0.28

resnet12 60.00 ± 0.44 80.55 ± 0.31 71.85 ± 0.46 88.09 ± 0.25 71.96 ± 0.37 87.25 ± 0.22

Baseline++ [39]
conv4 51.16 ± 0.43 67.99 ± 0.36 62.01 ± 0.49 77.72 ± 0.36 56.61 ± 0.44 76.60 ± 0.21

resnet12 63.25 ± 0.44 81.67 ± 0.30 75.25 ± 0.45 89.85 ± 0.23 76.11 ± 0.40 88.73 ± 0.31

Meta-Baseline [19]
conv4 51.35 ± 0.42 66.99 ± 0.37 58.98 ± 0.47 75.77 ± 0.37 56.25 ± 0.45 75.02 ± 0.34

resnet12 64.17 ± 0.45 81.41 ± 0.31 78.16 ± 0.43 90.04 ± 0.23 78.25 ± 0.41 90.00 ± 0.26

Ours
conv4 51.25 ± 0.40 68.05 ± 0.33 62.15 ± 0.44 78.12 ± 0.30 57.66 ± 0.31 77.28 ± 0.32

resnet12 68.75 ± 0.44 85.25 ± 0.32 79.48 ± 0.47 91.05 ± 0.26 79.84 ± 0.33 90.25 ± 0.23

In the study of few-shot learning, the same
backbone network is usually used for effect com-
parison. The two commonly used backbone net-
works are Conv4 and ResNet12 [8, 16, 25]. It can
be seen from Table 4 that the proposed model
has a more significant performance improvement
on both the shallow backbone network Conv4
and the deeper backbone network ResNet12. In
order to obtain higher classification accuracy and
fairly compare detection results, all the following
experiments are based on ResNet12 backbone.

Table 3 shows the results of the 5-way 1-shot
and 5-way 5-shot classification on mini -ImageNet
and CUB using this method. The experimental
results of 5-way 5-shot show that the accuracy of
our method on CUB is improved by 0.92% com-
pared to the DeepBDC model [11]. Our method
outperforms the current SOTA few-shot classi-
fication methods on the 5-shot settings. It is

well known that ”the fewer images selected in
each category (such as 1-shot), the higher the
requirement for model optimization capability”.
The experimental results of the model proposed in
this paper under 5-way 1-shot are also improved
by different degrees. Specifically, our method
improves by 4.23%, 1.34%, 1.32% and 0.47% com-
pared with Baseline++ [39], Neg-Margin [10],
Meta-Baseline [19] and DeepBDC [11] on CUB,
respectively, and shows superiority in the 1-shot
classification task.

In summary, our model exhibits superior per-
formance over other SOTA methods [8–11, 16, 19,
25, 39] in both the 1-shot and 5-shot settings,
particularly in the 1-shot case. The reason for
this phenomenon is that as the number of sup-
port sets increases, the available information for
each category becomes richer, but compared with
other few-shot learning methods, our model makes
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Fig. 6 Visualization of attention maps generated by
MPHAM. (a) shows the focal region on the fine-grained
dataset CUB, (b) indicates the focal region on mini-
Imagenet.

more effective use of the information provided
by the support sets. Through more noteworthy
task-related information capture and discrimina-
tive and diversity enhancement, higher classifica-
tion accuracy is ultimately obtained in the 1-shot
setting.

4.5 A Domain-Specific Application:
FPV

For domain-specific real-world tasks such as agri-
cultural plant disease classification, large-scale
sample collection is not feasible because experi-
enced agricultural experts are often required to
label them. There are some open source datasets
available on the Internet, but their classification
is generally detailed only to the disease category.
The Fine-PlantVillage dataset (FPV ) targeted in
this paper classifies the category to the disease
severity, which is significant for solving practi-
cal agricultural problems. Therefore, this section
focuses on the experiments and discussion of FPV
dataset. Figure 5 shows some examples of the
dataset, with the original PV dataset examples on
the left and the fine-grained dataset FPV on the
right. PV is a plant disease image dataset with

54,305 images of plant diseases, including 38 cat-
egories of disease leaves from 13 species of plants.
FPV has further refined the categories based on
PV. FPV includes 61 classes with a total of 45,285
images. It can be seen from Figure 5 that the same
picture has different category labels under differ-
ent fine-grained requirements. We are faced with
the challenge of fine-grained classification on FPV
datasets. And it is extremely difficult to classify
the severity of diseases within the same disease
category.

Fig. 7 Difficult category pairs to classify. The first column
is the labeled training data. The red numbers in the middle
column represent the incorrectly predicted categories, and
the third column shows the correct prediction results.

For this dataset, 5-way experiments are con-
ducted with both 1-shot and 5-shot trials. In the
FPV dataset we randomly select 30 classes as base
classes and the remaining classes as novel classes
to perform the few-shot learning task. As shown in
Table 3, it has obtained competitive performance
in the 5-way 5-shot compared to many recent,
more complex methods. Compared to methods
with the same complexity, our work focuses on
improving the performance of few-shot classifi-
cation on fine-grained image datasets and shows
significant advantages on CUB and FPV. The
classification accuracy improved from 89.45% to
90.25% in the FPV 5-shot experiments and from
79.00% to 79.84% in 1-shot experiments.

In addition, the focus regions of some examples
in FPV are visualized. As shown in Figure 8, we
randomly select several categories of samples and
visualize the heat map of feature weights. It can
be noticed that our model displays different heat
map focus distributions on each category, extract-
ing different features. As you can see, our method
can capture the key regions of the object, which
helps the model extract discriminant features for
classification.

Figure 9 shows the confusion matrix of our
method and the baseline model on the FPV
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Table 5 Comparison of the state-of-the-art few-shot classification algorithms on the FPV dataset. The best results are
highlighted in bold.

Methods
FPV

5way1shot 5way5shot
Optimization-based

MAML [16] 69.96 ± 0.46 82.84 ± 0.40
Metric-based

Matching N [25] 77.93 ± 0.44 88.63 ± 0.31
Relation N [9] 74.00 ± 0.42 85.86 ± 0.36

Prototypical N [8] 74.22 ± 0.43 86.70 ± 0.30
Baseline [39] 71.96 ± 0.37 87.25 ± 0.22

Baseline++ [39] 76.11 ± 0.40 88.73 ± 0.31
Meta-Baseline [19] 78.25 ± 0.41 88.76 ± 0.26
Neg-Margin [10] 78.06 ± 0.46 88.48 ± 0.37

FEAT [40] 76.25 ± 0.41 88.02 ± 0.24
BML [41] 77.21 ± 0.63 89.33 ± 0.29

DeepEMD [42] 76.69 ± 0.47 87.92 ± 0.34
DeepBDC [11] 79.00 ± 0.52 89.45 ± 0.26

Ours 79.84 ± 0.33 90.25 ± 0.23

Fig. 8 Visualization of the focal region localization on the FPV dataset. The second row shows the focal region without
MPHAM, and the third row shows the focal region with MPHAM.

Fig. 9 Confusion matrix of the baseline and our model.
D-12, D-13, D-20, D-21 and D-9 are five representative
categories. Each column in the matrix represents the pre-
diction result. Each row represents the real label.

dataset. It can be seen that the proposed method
greatly improves the classification accuracy on
class 20 and 21, and the possibility of class 13
being classified as class 12 is reduced. We perform
t-SNE on the high-dimensional representations of
easy-to-classify samples and hard-to-classify sam-
ples under our model. For the convenience of

viewing, we only show the dimensionality reduc-
tion results for 5 classes of samples. Figure 10
shows the dimensionality reduction results for
the easily classified samples, corresponding to
the coarse-grained images in PV. The t-SNE
results for the fine-grained images are presented in
Figure 11, whose class pairs ”class20-class21” and
”class12-class13” have extremely similar feature
representations.

Figure 7 shows the difficult category pairs to
distinguish. For example, samples of class 20 are
generally classified as class 21. It can be seen from
Figure 7 that the difference between these cate-
gories is very small. This similarity even confuses
agricultural experts to distinguish them.

Summarizing the above experimental phenom-
ena, there is also a fine-grained recognition prob-
lem for few-shot classification. Compared with
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Fig. 10 t-SNE visualization of 5 coarse-grained classes. (a) shows the 2D t-SNE visualization, (b) shows the 3D t-SNE
visualization.

Fig. 11 t-SNE visualization of 5 fine-grained classes. (a) shows the 2D t-SNE visualization, (b) shows the 3D t-SNE
visualization.

the existing models, the model proposed in this
paper achieves significant performance improve-
ment, which also fully reflects the advantages of
our method:

• With MPHAM and DDCM modules, the abil-
ity to capture key regions is obtained, and the
discriminability and diversity of classification
results are simultaneously improved. Through
this method, the information utilization rate
of few samples is more effectively improved.
Our approach is of great value in the field of
fine-grained few-shot classification.

• For domain-specific applications where data
acquisition is difficult, such as on fine-grained
plant disease datasets, our model has typi-
cal applicability, and the effect is significantly
improved on FPV. The few-shot model pro-
posed in paper has important significance in
intelligent agricultural disease classification.

5 Conclusion

Originating from real-world needs, this paper
focuses on the fine-grained few-shot plant dis-
ease classification problem by exploring atten-
tional features of several labeled samples. In
order to effectively capture the fine details of
fine-grained plant diseases, this paper further
proposes a multi-perspective hybrid attention
module (MPHAM), which focuses on the global
information of the image from different angles
using instance-attention, region-attention, soft-
attention, and patch-hard-attention. Aiming at
improving the discriminability and diversity of
the classifier, this paper introduces DDCM in
the loss function to constrain the Batch Nuclear-
norm of the classification matrix, which effectively
improves the classification accuracy of the hard-
to-classify samples. Extensive experiments are car-
ried out to verify the effectiveness of the proposed
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module. On a fine-grained plant disease dataset,
this paper also completes the few-shot classifi-
cation of natural images in practical industrial
applications. Undoubtedly, the method presented
in this paper is a valuable supplement to the fine-
grained few-shot classification problem in the field
of intelligence agricultural applications.
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