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Abstract
Learning to recognize novel visual classes from few samples is challenging but promising. Previous studies have shown

that few-shot model tends to overfit and lead to poor generalization performance, which is because it finds a biased

distribution based on a few samples. In addition, in agriculture-specific domains, there are more serious research challenges

such as imbalanced disease distribution, one-shot representation biases, fine-grained recognition, and granularity shift. As

far as we know, this study is the first work on the fine-grained ‘‘Coarse-to-Fine’’ few-shot plant disease classification,

which classifies ‘‘fine-grained novel classes’’ (specific to disease severity) based on ‘‘coarse-grained base classes’’ (specific

to plant species). A complete two-stage in-use calibration strategy is presented in this paper. Firstly, we propose an

attention-based inverse Mahalanobis distance weighted prototype calibration module (AIPCM). By transferring statistics

from sample-rich coarse-grained base classes to sample-scarce fine-grained novel classes, we achieve prototype calibration

for 1-shot sample and obtain an unbiased distribution in the feature space. Secondly, to generate more reasonable decision

boundaries, we propose a prior-driven task-adapted decision boundary calibration module (TDBCM) based on class-

covariance metric. The original Euclidean/Cosine distance is updated to the Mahalanobis distance by introducing the prior

mean and covariance of the high-dimensional features. Experimental results on several datasets demonstrate that our model

outperforms the state-of-the-art (SOTA) models. It can be said that our work is a valuable supplement to the domain-

specific agricultural applications.

Keywords Fine-grained classification � Few-shot learning � Visual attention � Prototype calibration � Decision boundary

calibration � Class-covariance metric

1 Introduction

Deep learning has been widely used in computer vision

tasks such as image classification [1, 2], object detection

[3, 4], and image segmentation [5, 6]. These methods

typically use large amounts of labeled datasets for training

to achieve optimal model performance. However, it is

costly to acquire or annotate data to create large training

datasets in real-world applications. The model tends to

overfit the training sample, resulting in a significant

reduction in generalization performance over novel classes

when there is too little data. In recent years, research topics

focusing on ‘‘recognizing new visual categories after see-

ing some labeled samples’’ have emerged, which is an

important research attempt to make artificial intelligence

truly ‘‘intelligent’’. Research on this topic is typically

referred to as ‘‘few-shot learning’’.

Actually, it is challenging to acquire scarce sample

datasets in specific fields. In recent years, smart agriculture

has emerged as a strategic development domain in

numerous countries. Rapidly detecting plant diseases is

crucial for food production safety and sustainability.

However, it is extremely limited for annotating plant status

data due to low incidence, high-cost of collection, time-

consuming, and the need for professional manpower.

Agriculture-specific fine-grained few-shot learning emerge
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in this situation and become one of the important topics in

computer vision research.

The specific domain data exhibits distinct characteristic

features, including high disease image collection costs,

subtle inter-class differences, higher susceptibility to noise,

need for expert annotations, low disease rates, and imbal-

anced sample distribution. Regarding the aforementioned

domain-specific issues, we believe that the fine-grained

few-shot disease recognition poses more challenges com-

pared to conventional image classification tasks:

• Limited and imbalanced disease data.

• Distribution bias formed by few-shot samples.

• One-shot disease prototype space construction.

• Fine-grained disease representation and recognition.

• Granularity shift.

Unlike traditional deep learning tasks [1–6], few-shot

learning aims to train a model from well-labeled base

classes and apply it to unseen novel classes with only a few

labeled data. Current few-shot learning methods fall into

three categories: optimization-based, metric-based, and

generation-based methods.

Optimization-based methods employ gradient descent to

rapidly adapt model parameters to novel tasks. For exam-

ple, the meta-learning algorithm MAML [7] sought an

optimal parameter initialization, simplifying fine-tuning for

new tasks. The meta-transfer learning algorithm (MTL) [8]

employed a deep pre-trained network for transfer learning,

retraining a limited parameter subset to ensure the model’s

transferability without compromising its generalization

capabilities. Reference [9] enhanced the robustness of

results through joint prediction, which integrated different

stages of training upon MTL.

Metric-based methods learn a metric to indicate the

similarity relationship between samples. For example, the

matching network [10] learned a distance metric to con-

struct the relationships between sample pairs, and to clas-

sify unlabeled samples based on the relationship score.

Treating the average feature of each class as the prototype,

the prototypical network [11] calculated the Euclidean

distance between the input sample, and the class prototype,

and classified the sample as the closest prototype class.

Another approach [12] introduced a prototype correction

network using Cosine similarity. It corrected novel class

prototypes by addressing intra-class and cross-class devi-

ations. In recent years, most of the SOTA methods have

fallen under the umbrella of metric learning.

Generation-based methods aim to increase the number

of training samples, which is essentially a data augmenta-

tion method. Wang et al. [13] utilized data augmentation to

generate diverse samples by altering factors like pose,

lighting, and position, thereby enlarging the training data-

set. Park and Han et al. [14] transferred the feature

variations from base to novel classes by sharing factors

across categories, reducing novel class representation bias.

Recent research by Xian et al. [15] revealed that the feature

space has a lower dimensionality, and processing on sam-

ple features can reduce bias. Subsequently, Liu et al. [16]

assumed that the features of each category are independent

and follow a Gaussian distribution in long-tailed data

classification, by which the feature representation of the

tail data can be enriched using the intra-class variance in

the head data.

Based on the above research, it can be found that most

of the previous work focus on developing more powerful

models, but pay little attention to the properties and dis-

tributions of the data itself. Leveraging prior distributions

from base classes and applying them to novel classes

sharing akin distributions can enhance the generalization

ability of few-shot learning models. Some existing data

distribution-based models [16, 17], on the one hand, mainly

select the most similar categories from the base classes to

adjust the novel class data features, inadvertently disre-

garding valuable information from alternate categories. On

the other hand, the calibrated novel class distribution is

mainly used for generating samples within the distribution.

While in the final classifier, only simple logistic regression

is used for processing, which is essentially a data aug-

mentation method.

In this paper, we explore a novel work on fine-grained

few-shot plant disease classification for the smart agricul-

ture field, which classifies ‘‘fine-grained novel classes’’

(specific to disease severity) based on ‘‘coarse-grained base

classes’’ (specific to plant species). First, we propose an

attention-based inverse Mahalanobis distance [18] weigh-

ted prototype calibration module (AIPCM). The extracted

high-dimensional features are processed by power trans-

formation, and similarity weighting is applied to the base

classes to calibrate the novel prototype. To obtain an

unbiased distribution, we transfer statistics from sample-

rich coarse-grained base classes to sample-scarce fine-

grained novel classes. In this way, the prototype and dis-

tribution calibration for 1-shot sample is achieved. To

obtain more reasonable decision boundaries, we introduce

a prior-driven task-adapted decision boundary calibration

module (TDBCM) based on class-covariance metric. This

method is inspired by previous similar works [19–21],

introducing class covariance distance as a fundamental

metric function. The Mahalanobis distance considers inter-

feature correlations through the class-covariance matrix,

effectively addressing the Euclidean [11]/Cosine [22, 23]

distance’s insensitivity to the distribution of intra-class

samples with respect to their prototypes. Unlike previous

methods, TDBCM fully considers prior distributions from

base classes and performs episode-based intra- and inter-

class co-computation of the covariance matrix. For few-
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shot tasks in specific domains, our approach further opti-

mizes the decision boundary by incorporating prior mean

and variance information. Our two-stage calibration pro-

cedure (depicted in Fig. 1) yields a precise few-shot non-

linear classifier through prototype and metric function

calibration. Finally, we apply our approach to several

domain-specific fine-grained datasets to tackle real-world

novel or rare plant disease classification tasks.

To summarize, the main contributions of this paper are

as follows:

• We propose an attention-based inverse Mahalanobis

distance weighted prototype calibration module

(AIPCM). On the one hand, more local fine-grained

features are discovered using the focal region localiza-

tion mechanism. On the other hand, compared with

existing prototype-based few-shot studies, the proposed

method can fully utilize statistics from all base classes,

and obtain more accurate novel classes prototype

representation through inverse Mahalanobis distance

weighting.

• A prior-driven task-adapted decision boundary calibra-

tion module (TDBCM) based on class-covariance

metric is introduced to construct more rational decision

boundaries. Unlike previous covariance-based methods,

TDBCM incorporates prior distributions and performs

episode-based intra- and inter-class covariance compu-

tation collaboratively to capture inter-feature correla-

tions, addressing the Euclidean distance’s insensitivity

to the intra-class sample distribution.

• A comprehensive two-stage in-use calibration strategy

is presented in this paper to effectively address the

representation and distribution bias issues in few-shot

learning. Particularly, on three domain-specific fine-

grained few-shot datasets, our method achieves optimal

performance. It can be said that our work serves as a

valuable supplement to the domain-specific application

models.

The remaining parts of this paper are organized as follows.

Section 2 summarizes related work on few-shot learning,

fine-grained classification and plant disease classification.

Section 3 provides a detailed description of the proposed

AIPCM and TDBCM methods. Then, Sect. 4 presents

experimental settings, ablation experiments, and analysis

of experimental results on different datasets. Finally,

Sect. 5 concludes the paper and provides prospects for

future research.

2 Related work

In this section, we briefly introduce related research fields

to define and describe our own proposed approach. We

introduce the current status of plant disease classification,

along with two closely related fields: few-shot learning and

fine-grained image classification.

2.1 Plant disease classification

Plant disease classification. Recently, artificial intelli-

gence, particularly deep learning, has rapidly advanced and

made inroads across agricultural domains. In 2019, Sel-

varaj et al. [24] achieved 94.1% accuracy for banana fruit

disease detection using Faster-RCNN. Mohanty et al. [25]

trained and tested on 54,306 plant disease leaf images from

the PlantVillage dataset with AlexNet [26] and GoogleNet

[27], achieving the highest accuracy of 99.35%. Brahimi

et al. [28] utilized 14,828 tomato disease leaf images for

training and testing, resulting in 98.66% and 99.18%

accuracy using AlexNet and GoogLeNet models. Recent

research [29] proposed a lightweight and cost-effective

deep learning architecture, using the proposed DenseNet-

121 model to classify leaf images from a dataset named

Fig. 1 Complete two-stage in-use calibration strategy: 1-shot proto-

type calibration and prior-driven task-adapted decision boundary

calibration. PC(�) denotes prototype calibration and BC(�) denotes

decision boundary calibration. �1 shows the t-SNE representations of

the five classes in the feature space. The two F in 2 represent the 1-

shot prototypes of two novel classes. Before calibration, they are

located at the edge of the distribution and are not representative. The

prototype F is calibrated in �3 and located at the center of the class

distribution. The covariance distance instead of the Euclidean

distance in �4 allows the classification decision boundary to be

calibrated and the 1-shot classification task gets better generalization

ability
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‘‘PlantDoc.’’ This model achieved fast and efficient

recognition, but the overall classification accuracy was

only 92.5%.

The quantity of plant disease images utilized in the

aforementioned studies suffices for deep learning model

training. However, in real-world scenarios, some plant

diseases have scarce or merely tens of training data due to

low incidence rates and costly image collection, which

constrains the application of the above-mentioned methods.

2.2 Few-shot learning

Few-shot learning explores how to improve the perfor-

mance of a model with limited labeled data. Considering

algorithm relevance to our study, we focus on two of them.

Optimization-based few-shot learning. The goal of

optimization-based few-shot learning algorithms is to find

good initialization parameters. In this way, the model can

quickly find the optimal initial value with fine-tuning when

identifying novel classes that have never been seen before.

Model-agnostic meta-learning (MAML) [30] and Meta-

SGD [31] tended to modify the gradient computation

algorithm, leading to notable outcomes in just a few gra-

dient steps. Ravi and Larochelle [32] not only acquired

effective initial parameters but also developed an LSTM-

based [33] optimizer tailored for fine-tuning efficiency.

However, fine-tuning is often required during testing,

which means there are still model updates when dealing

with the target mission, so they are not very effective in

1-shot learning. Momin Abbas et al. [7] proposed an

improved MAML algorithm that utilized sharpness-aware

minimization to avoid the loss function from getting stuck

in a local optimum.

Metric-based few-shot learning. Metric learning-based

approaches strive to develop an embedding space where

samples of the same class are closer and distinct ones are

distant. During testing, it is classified by comparing the

similarity between the query sample and the class proto-

type. RelationNet [10] argued that simple metrics cannot

measure complex relationships between high-dimensional

data well, and therefore introduced an adaptive similarity

metric learning module. Reference [34] utilized graph

neural networks (GNN) to model the similarity between

class prototypes and query samples. The above networks

typically ignore the advantages of local features in

enhancing model discriminability and adaptability. There-

fore, DeepEMD [35] introduced EMD distance for simi-

larity measures while preserving local features, which

brought higher computational complexity in both training

and testing stages. Adaptive plug-and-play network [36]

proposed that the metric function determined the upper

limit of the few-shot classification accuracy, and

introduced a model-adaptive resizer and adaptive similarity

metric, achieving advanced results on multiple datasets.

2.3 Fine-grained image classification

Fine-grained image classification refers to the classification

of objects with strong feature similarity, which are usually

very similar in appearance, even difficult to be distin-

guished by humans. The current mainstream methods

[37–39] usually start by localizing the most discriminative

regions in the image and then using the extracted local

features for classification. Recent studies increasingly

adopt self-attention models like transformers to address

fine-grained challenges. TransFG [40] proposed a novel

transformer-based structure, which aggregated all the

original attention weights into an attention map to guide

the network to efficiently and accurately select discrimi-

native patches. ViT-FOD [41], a fine-grained detection

model based on Vision Transformer, decomposed the input

image into multiple small patches and encoded these pat-

ches with vision transformer to extract a feature represen-

tation of the image. Experiments verified that ViT-FOD has

strong performance and generalization ability.

In summary, despite the notable accomplishments of

deep convolutional neural networks and transformers

across various visual tasks [24, 28, 37–39, 41], obtaining

discriminative representations remains a challenging

problem for fine-grained image classification. In particular,

there is still no effective method for classifying fine-

grained images using only a few labeled samples. Different

from these methods, this paper proposes an attention-based

inverse Mahalanobis distance weighted prototype calibra-

tion module, which can focus on fine-grained feature

information besides obtaining a more accurate class pro-

totype representation. Meanwhile, a distance function

based on class-covariance metric is introduced to obtain a

more reasonable partition surface. The two-stage in-use

calibration approach can eventually be used to solve the

fine-grained few-shot image classification problem in a

specific domain.

3 Proposed method

Problem definition. According to the standard definition

of few-shot classification task [10, 11, 22, 42], we divide

the dataset into a base classes dataset Dbase ¼ xi; yið Þf gN
i¼1

and a novel classes dataset Dnovel, where xi represents an

image sample, yi represents the class label of xi,

Dbase

T
Dnovel ¼ ;, and N denotes the total number of

images. Few-shot learning typically adopts the meta-task

for training and evaluation. The most common paradigm
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for constructing meta-task is the C-way K-shot Q-query

task, where C classes are sampled from the novel set, K

labeled images are extracted from each class as training

samples, and Q samples are extracted from the remaining

images of each class as query images for prediction. The

labeled dataset is called support set, and unlabeled data for

prediction are called query set. For each meta-task C (C-

way K-shot Q-query), the support set S and query set Q are

defined as follows:

S ¼ xs
i ; ys

i

� �� �Ns

i¼1
Ns ¼ K � Cð Þ

Q ¼ xj; yj

� �� �Nq

j¼1

ð1Þ

where K denotes K images with labels and C denotes the

number of novel classes. A few-shot task defined in this

way is called a C-way K-shot setting.

Overall framework. To address the fine-grained few-

shot classification problem, this paper proposes a novel

two-stage in-use calibration approach. The overview

framework, as depicted in Fig. 2, primarily comprises an

attention-based inverse Mahalanobis distance weighted

prototype calibration module (AIPCM) and a prior-driven

task-adapted decision boundary calibration module

(TDBCM) aimed at refining the partition surface. AIPCM

comprises a hybrid attention module (HAM), a feature

Gaussianization module (FGM), and a prototype calibra-

tion module (PCM). HAM employs both instance and

region attention to focus on global and local information

from different perspectives. FGM gaussizes the high-di-

mensional features to obtain usable feature distributions.

The prototype calibration module employs inverse Maha-

lanobis distance weighting to calibrate the distribution of

few-shot prototypes in the novel classes, thereby obtaining

prototype representations with smaller biases. TDBCM

introduces a covariance-based metric to constrain the

decision boundary between classes.

Details of each module will be described below. Sec-

tion 3.1 presents the implementation details of HAM and

FGM, corresponding to �1 in Fig. 2. Sections 3.2 A and B

summarize the base class statistics and prototype

Fig. 2 Overview framework proposed for the 5-way 1-shot fine-

grained classification task. a The process of collecting base class

statistics, including feature weighting and Gaussianization. b The

evaluation stage for 1-shot sample. We calibrate the prototype

representation with PC(�) to obtain a well-positioned prototype and

calibrate the decision boundary with informative prior-driven task-

adapted BC(�) to obtain an accurate classification decision boundary.

c An example of 5-way 1-shot task for fine-grained plant disease

classification. Current disease classification is only accurate to the

disease category; while, our model can accurately identify the disease

severity, such as ‘‘Grape-black rot fungus-serious’’ in the figure
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calibration process, corresponding to 2 and �3 in Fig. 2.

Section 3.3 describes TDBCM in detail, corresponding to

�4 in Fig. 2.

3.1 Feature pre-processing module

The most commonly used feature encoder backbones for

few-shot tasks are Conv-4 [11] and ResNet-12 [11].

However, the results of these networks are not satisfactory

for fine-grained few-shot tasks, and models relying on

classical backbones as encoders fail to fulfill the demands

of fine-grained image recognition. To effectively extract

and leverage these fine-grained features, pre-processing is

essential. Specifically, we first integrate the convolutional

block attention module into the feature encoder to construct

a novel HAM. Secondly, to enable the distribution cali-

bration method, we construct FGM to Gaussianize high-

dimensional feature vectors.

Focus: hybrid attention module. Inspired by CBAM

[43], we integrate the convolutional block attention module

into the feature encoder to construct HAM. As shown in

Fig. 3, HAM treats the features extracted by the backbone

as prior knowledge for the subsequent attention branch.

Then, it focuses on the discriminative features from dif-

ferent perspectives using instance attention and region

attention. This module does not require separate pre-

training, which simplifies the training process. The detailed

structure of HAM is illustrated in Fig. 3, encompassing two

submodules: The instance attention module and the region

attention module, with these two attention submodules

being concatenated. HAM is inserted into the backbone

network in two ways. For Conv-4, HAM is inserted after

each convolutional layer, as depicted in the convolutional

attention unit (CAU) in Fig. 4. For ResNet-12, the insertion

is done by inserting HAM after the skip connection, as

depicted in the residual attention unit (RAU) in Fig. 4. In

the feature extraction stage, the base class samples are used

for pre-training and the final Softmax layer is removed to

obtain a feature extractor for input samples.

Gaussianization: refined power transform. Existing

work [16] usually assumes that features from the same

class have a specific Gaussian distribution. However, in

reality, features extracted by the feature extractor are

usually not Gaussian distributed. To make the distribution

calibration assumption hold, we first need to Gaussianize

high-dimensional feature vectors. The research in [44]

shows that power transformation (PT) can make the fea-

tures better fit the distribution assumption. Motivated by

this, we introduce this transformation formula to Gaus-

sianize the input feature.

To avoid the dominance of features with large variances

in the existing methods, we add a unit variance projection

operation to the original commonly used PT method,

Tukey’s Transformation Ladder [44]. Assuming v is the

feature extracted from Dnovel, the refined power

Fig. 3 Hybrid attention module (HAM). The image features are

weighted by the instance attention module and region attention

module, respectively, to obtain high-dimensional feature vectors.

HAM is integrated into the commonly used backbone networks Conv-

4 and ResNet-12 for few-shot learning, forming a novel attentive

feature encoder
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transformation (R-PT) formula for feature v can be

expressed as follows:

f ðvÞ ¼

ðvþ �Þb

ðvþ �Þb
�
�
�

�
�
�
2

if b 6¼ 0

logðvþ �Þ
k logðvþ �Þk2

if b ¼ 0

8
>>>><

>>>>:

ð2Þ

where b is a hyperparameter used to adjust the distribution

skewness. When b=1, the distribution is almost unaffected,

and as b changes, the skewness of the distribution changes

accordingly. � ¼ 1e � 6 is a hyperparameter to ensure that

vþ � is always positive.

R-PT can alleviate distribution skewness, facilitating

features to better fit a typical Gaussian distribution. The

unit variance projection allows features to be scaled to a

uniform scale, avoiding the dominance of features with

large variances.

3.2 Inverse-MD weighted prototype calibration
module

As depicted in Fig. 1, the prototype distribution is typically

not accurate enough for 1-shot tasks. The 1-shot sample is

likely to occur at the edge of the distribution, making the

representative prototype less typical. In general, existing

prototype calibration models exhibit two shortcomings. On

the one hand, current models utilize the mean value of the

top-n base classes closest to the novel classes to calibrate

few-shot prototype, while ignoring the similarity informa-

tion in the remaining base classes. On the other hand, most

approaches neglect the correlation between feature

dimensions when measuring feature similarity and simply

use Euclidean/Cosine distance to compare sample simi-

larity. To address the above issues, we propose AIPCM

which makes full use of all the learned base class statistics

to calibrate the novel class prototypes.

A. Base class statistics.

Each feature dimension of each class after feature

Gaussianization follows a Gaussian-like distribution. As

shown in Fig. 2a, for all samples in base classes, the feature

vectors are extracted by the attention-based feature

extractor and then Gaussianized using FGM. Subsequently,

the mean and variance of all samples within each class are

calculated. The module 2 in the upper right corner of Fig. 2

represents the base classes statistics module. For a few-shot

learning task C, we define the Gaussianized high-dimen-

sional feature vector as x, the class prototype mean of each

class of the support set as l, k denotes the k-th class, and SC
k

denotes all samples belonging to class k. The mean lk and

covariance matrix Mk are calculated as follows:

lk ¼
PjSCk j

i¼1 xi

jSC
k j

ð3Þ

Mk ¼
1

jSkj � 1

X

xi2Sk

xi � lkð Þ xi � lkð ÞT ð4Þ

Figure 5 shows the detailed distribution calculation process

for class k.

B. Inverse-MD prototype calibration.

Similar classes typically have similar feature represen-

tations with mean and variance. We can use the mean and

variance of the Gaussianized high-dimensional vectors in

the base classes to calibrate the prototype distribution of

few-shot samples. The computed mean lk and covariance

Mk can be stored as the prior distribution of the base

classes for future use.

To fully leverage the prior base class distribution, we

propose a prototype calibration method based on similarity

weighting. We first calculate the Mahalanobis distance [18]

between the few-shot prototypes and the feature mean in

each base class. Base classes exhibiting smaller distances

to the novel class samples will be assigned greater weights

in the prototype representation. Here, we opt for the

Mahalanobis distance over the conventional Euclidean

distance. The application of the Mahalanobis distance takes

into account the correlation among the sample feature

dimensions.

Fig. 4 Diagram of residual attention unit (RAU) and convolutional

attention unit (CAU). HAM is inserted differently in Conv-4 and

ResNet-12. In RAU, HAM is added after the skip connection. In

CAU, HAM is inserted between two adjacent convolutional layers

Fig. 5 Base class distribution statistics. The left side shows the high-

dimensional weighted vectors of all samples belonging to class k. The
right side shows the statistical results of the distribution of class k,
from which we can obtain the mean and variance of the data in each

feature dimension
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For a multivariate variable x with mean l and covari-

ance matrix Q (specific to the task C and class k) (The

detailed formula of Q is shown in Sect. 3.3), its covariance

distance can be represented as:

DkðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � lÞTðQÞ�1ðx � lÞ
q

ð5Þ

Then, the similarity coefficients are calculated using the

Mahalanobis distances, and the similarity coefficients are

normalized to obtain the weight coefficients. The similarity

coefficient mk and the weight coefficient wk can be

expressed as follows:

mk ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � lkÞTðQÞ�1ðx � lkÞ

q ð6Þ

wk ¼
mk

PjSC
k
j

k¼1 mk
ð7Þ

Finally, the few-shot prototypes in the novel classes are

represented by weighting all base class prototypes as

follows:

p ¼
XjS

C
k j

k¼1

wk � lk
ð8Þ

For N novel classes, there are N calibrated prototype dis-

tributions, avoiding bias caused by few-shot samples.

Finally, we can obtain a set of statistics for the calibrated

distribution. The brief operation of AIPCM is shown in

Fig. 6. As shown in Fig. 7, the dark yellow F in the right

figure is the calibrated prototype.

3.3 Prior-driven task-adapted decision boundary
calibration module

After obtaining the calibrated novel classes prototype and

distribution, we can further refine the decision boundary

using prior distribution. After investigation, we find that

existing few-shot learning methods typically use squared

Euclidean distance [11] or Cosine distance [22, 23] as the

distance metric after complex nonlinear mapping. The

Euclidean/Cosine distance is indeed a good choice for tasks

with unknown sample distributions, but when the distri-

bution can be quantified, using Mahalanobis distance with

the covariance matrix incorporated into the distance metric

is a better choice. Compared to the Mahalanobis distance,

Euclidean/Cosine distance suffers a notable limitation: it

overlooks the correlation among feature dimensions. The

Mahalanobis distance incorporates feature dimension

correlations via the covariance matrix during distance

computation, effectively addressing the limitation of the

Euclidean distance’s insensitivity to intra-class sample

distribution. The class decision boundaries with Maha-

lanobis distance and Euclidean distance are shown in

Fig. 8.

In this paper, we propose a prior-driven task-adapted

decision boundary calibration module (TDBCM). TDBCM

differs from previous methods [19–21] by fully incorpo-

rating prior distribution information from base classes and

performing episode-based intra- and inter-class covariance

matrix computation. Compared to other covariance mea-

surement methods, our approach has four main character-

istics: Intra-class and inter-class covariance collaboration;

Episode-based covariance training; Prior-driven covariance

matrix calculation; Interpretability and distribution quan-

tification. In the distance metric part, the similarity metric

is performed by replacing the Euclidean/Cosine distance

with the Mahalanobis distance. The right module �4 in

Fig. 2b shows the calibrated decision boundary.

For a few-shot learning task C, we define the Gaus-

sianized high-dimensional feature vector as x, the class

prototype mean of each class of the support set as l, and k

denotes the k-th class. The Mahalanobis distance dk can be

expressed as:

Fig. 6 Attention-based inverse Mahalanobis distance weighted pro-

totype calibration module (AIPCM). We calculate covariance

distances between the query image and all base class prototypes,

obtaining similarity coefficients and weight coefficients for each

class. This allows us to fully utilize all base class information to

calibrate the prototype representation of 1-shot query image
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dkðx; lÞ ¼
1

2
ðx � lÞT QC

k

� ��1ðx � lÞ ð9Þ

where dkðx; lÞ denotes the covariance distance, and its

covariance matrix is denoted as QC
k , which represents the

covariance matrix specific to task C and class k. Since the

number of samples in the support set in few-shot learning is

much smaller than the feature dimension, a regularization

method is used to calculate QC
k to ensure invertibility.

QC
k ¼ kCk M

C
k þ 1� kCk

� �
MC þ bI ð10Þ

In Eq. (10), I denotes the identity matrix; b denotes the

matrix scaling factor, and b = 0.5 in this experiment; QC
k is

a weighted combination of two covariance matrices, where

MC
k is the intra-class covariance matrix, and MC is the

inter-class covariance matrix; MC is obtained by estimating

the eigenvalues xi for all xi 2 SC
k .

MC
k ¼ 1

jSC
k j � 1

X

xi2SC
k

xi � lkð Þ xi � lkð ÞT ð11Þ

where SC
k denotes the samples belonging to class k in the

support set, and MC
k is defined as the zero matrix in the 1-

shot case. For MC, it is calculated in the same way as MC
k ,

except that MC is defined as the covariance matrix of all

classes of task C for all samples in SC. The scale factor kCk
is calculated by the following equation.

kCk ¼ jSC
k j= jSC

k j þ 1
� �

ð12Þ

For the few-shot learning task C with C-way N-shot, when

N= 1, QC
k = 0. 5MC ? bI, where QC

k only depends on b and

MC; when N is larger than 1, QC
k is gradually determined by

MC
k , M

C and b together, and the larger N is, the greater the

influence of the intra-class covariance matrix MC
k on QC

k .

The full procedure of the proposed algorithm can be

obtained from Algorithm 1.

Fig. 7 Illustration of AIPCM usage. The Base class statistics in the

upper left part of the figure are stored for use. After feature extraction,

a 5-way 1-shot task yields 5 initial prototypes. We calculate the

covariance distance for each prototype with all base class prototypes

separately and obtain the final calibrated prototype by similarity

weighting. The calibrated prototype contains distribution information

such as mean l and covariance M

Fig. 8 Examples of classification results with different distance

measures. The Euclidean distance (left) decision boundary is centered

on the class mean l, forming an equidistant decision boundary in each

dimension, and wrong classification results are obtained. The

Mahalanobis distance (right) takes into account the feature dimension

covariance in forming the decision boundary and yields a more

reasonable partition surface. BC(�) represents the operator for

decision boundary calibration
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Algorithm 1 Algorithm procedure for few-shot

4 Experimental result and analysis

In this paper, we focus on intra-domain fine-grained clas-

sification tasks with similar distributions. In particular, we

will explore a novel ‘‘Coarse-to-Fine’’ plant disease clas-

sification task (base classes: coarse-grained ! novel clas-

ses: fine-grained). Our proposed method demonstrates

robust migration generalization across closely distributed

datasets within the same domain. In this section, we will

answer some questions as follows.

(1) How does our model perform in the module ablation

experiment? Are all modules necessary and effec-

tive? (Sect. 4.3)

(2) How does our novel prototype and boundary cali-

bration strategy fare on generic datasets (e.g., mini-

ImageNet and CUB) compared to state-of-the-art

methods? (Sect. 4.4)

(3) How effective is it in agriculture-specific fine-

grained classification tasks (e.g., FPV)? (Sect. 4.5

‘‘Fine-to-Fine’’ task)

(4) How does our proposed methodology perform on the

agriculture-specific ‘‘Coarse-to-Fine’’ task?

(Sect. 4.5 ‘‘Coarse-to-Fine’’ task)

4.1 Experiments

To evaluate the model effects, we conduct experiments on

datasets of varying granularity. We select mini-ImageNet

[45] as a representative coarse-grained dataset and CUB

[46] as a representative fine-grained dataset. These datasets

are commonly employed in few-shot tasks, allowing for a

fair assessment of performance disparities between our

approach and SOTA methods.

In addition, we apply the proposed model to fine-grained

plant disease classification. The classification performance

in this field is evaluated based on the FPV dataset, a finer-

grained dataset containing 10 species and 61 diseases, each

labeled in the format ‘‘plant disease severity.’’ As shown in

Fig. 9, the inner circle represents its coarse-grained clas-

sification and the outer circle represents its fine-grained

classification.

In the ablation experiments, we compare the perfor-

mance differences when HAM, AIPCM, and TDBCM

appear individually and in combination, and verify the

effectiveness of each module in fine-grained few-shot

tasks.

For the method comparison, we experiment with 5-way

1-shot or 5-way 5-shot classification settings on the above

datasets under uniform parameters. mini-ImageNet con-

tains 100 different classes with image size of 84 � 84 � 3.

Following the common splitting method in previous studies

[11, 22, 47], we divide the dataset into 64 base classes, 16

validation classes, and 20 novel classes. CUB contains 200

different species of birds. Also following the previous

splitting method [11, 22, 47], we divide the dataset into 100

base classes, 50 validation classes, and 50 novel classes.

The domain-specific datasets are applied to two classi-

fication tasks: the ‘‘Fine-to-Fine’’ task (Task-1) and the

‘‘Coarse-to-Fine’’ task (Task-2). In FPV, 30 classes are

selected as base classes, 15 classes as validation classes,

and 15 classes as novel classes for the general Task-1. The

novel ‘‘Coarse-to-Fine’’ task starts by dividing the dataset

evenly into two disjoint subsets. Subset A serves as the

base classes and is divided into 10 classes according to

plant species. Subset B, the novel classes, is divided into 60

classes according to disease severity. In Sect. 4.5 Task-2,

we select 20 of these classes as novel classes for

experiments.
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4.2 Implementation details

Details.We use ResNet-12 [1] as the feature extractor. Pre-

training is performed using base class samples. Once the

training is completed, the parameters of this feature

extractor are frozen unchangeably and the final Softmax

layer is removed to obtain the feature extractor. All images

are resized to a uniform input size of 84 � 84 and the

momentum is set to 0.9. The initial learning rate is set to

0.001, and halving is performed every 20 epochs. Experi-

ments are conducted on NVIDIA 2080 Ti GPU based on

the PyTorch framework.

Evaluation metrics. The evaluation metrics align with

the mainstream metrics [11, 22]. The accuracy figures pre-

sented in the table are all top-1 accuracy. We report the

classification accuracy of different methods on mini-Ima-

geNet, CUB, and FPV under 5-way 1-shot and 5-way

5-shot experimental settings, respectively.

4.3 Ablation studies

During the ablation experiment, ResNet-12 is used as the

basic backbone of the feature encoder. For 5-way 5-shot

setting, each episode consists of 5 classes, and each class

contains 5 support samples. As shown in Table 1, to further

validate the effectiveness of HAM, FGM?PCM, and

TDBCM, we apply these three modules individually or in

combination to the baseline model and conduct experi-

ments on three datasets.

As shown in Table 1, in the classification task, if the

module is added then mark (
p
) the appropriate place in the

table, otherwise leave it blank. Several marks (
p
) means

that several modules are used at the same time. Since the

PCM module must rely on FGM to operate, they are used

in conjunction. When the modules are combined, FGM and

PCM do not appear separately.

The influence of HAM. The second row of Table 1

shows the classification results with the addition of HAM

alone. Experiments show that HAM has good generaliza-

tion on all three datasets and can effectively improve the

classification performance of the original model. In par-

ticular, the classification accuracy has been improved by

0.72% and 1.05% on the fine-grained datasets CUB and

FPV, respectively. This indicates that the attention mech-

anism is very helpful for fine-grained feature extraction,

and focusing on the most relevant features through HAM is

important. We visualize the focusing effect of some sam-

ples after HAM processing, and the attention heat map is

shown in Fig. 10.

The influence of R-PT. Comparing rows 3 and 4, 6 and

7, 9 and 10 in Table 1, it is evident that FGM (R-PT) ?

PCM consistently yields better results. Particularly on the

coarse-grained dataset mini-ImageNet, the improvement

from the R-PT method is more prominent compared to the

fine-grained dataset. This effect could potentially stem

Fig. 9 ‘‘Coarse-to-Fine’’ task. The inner circles are coarse-grained

base class data, which are labeled in the format of ‘‘plant species.’’
The outer circle shows the fine-grained annotation of each image,

which is in the format of ‘‘plant disease severity.’’ In this novel task,

the base class samples are visible with labels accurate only to plant

species, and the novel class data with invisible labels need to be

classified to fine-grained disease severity
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from the constraints of the R-PT method on large intra-

class variances in coarse-grained data.

The influence of FGM1PCM. It is employed during

instance predictions within novel classes. Focusing on the

first and fourth rows in Table 1, we can observe that there

is a significant performance improvement on FPV and

CUB, but a smaller improvement on mini-ImageNet. We

can probably infer that the possible reason is that our model

assumes that the base classes and the novel classes have

similar distributions. In the case of mini-ImageNet, a

generalized dataset with limited class similarity, the feature

distribution transfer-based AIPCM exhibits diminished

performance. However, in datasets CUB and FPV, where

the similarity criterion is fulfilled, the prototype calibration

module demonstrates substantial enhancement in

effectiveness.

The influence of TDBCM. TDBCM is a similarity

distance metric module that fully considers the data cor-

relation problem among dimensions in high-dimensional

features to calibrate the decision boundary of nonlinear

classifiers. Focusing on the first and fifth rows in Table 1,

we observe that the separate presence of TDBCM leads to

performance enhancement. The baseline employs the

Cosine distance as its distance metric. The performance

improvement results from substituting the Cosine distance

with the Mahalanobis distance, which effectively utilizes

the base classes feature distribution in the distance metric.

In addition, we compare the 5-way n-shot classification

accuracy (%) on mini-ImageNet and CUB with Euclidean

distance and Mahalanobis distance. As shown in Fig. 11,

where the green bars indicate the Euclidean distance and

the yellow bars indicate the Mahalanobis distance. It is

evident that the covariance metric exhibits improved

classification accuracy across varying numbers of shots,

with accuracy improvements more pronounced for smaller

shot numbers. In the last row of Table 1, the simultaneous

use of the three proposed modules resulted in the best

performance.

In summary, the series of ablation experiments demon-

strate the effectiveness and strong generalization ability of

the proposed modules.

Table 1 Ablation study of

5-way 5-shot on few-shot

classification

Baseline HAM FGM(PT)

?PCM

FGM(R-PT)

?PCM

TDBCM mini-ImageNet CUB FPV

p
83.01 ± 0.33 90.10 ± 0.23 88.84 ± 0.40

p p
84.00 ± 0.34 90.82 ± 0.44 89.89 ± 0.37

p p
83.61 ± 0.33 91.00 ± 0.30 89.59 ± 0.35

p p
83.86 ± 0.36 91.04 ± 0.31 89.67 ± 0.37

p p
84.41 ± 0.35 91.13 ± 0.31 90.07 ± 0.43

p p p
84.30 ± 0.33 91.08 ± 0.32 89.93 ± 0.35

p p p
84.50 ± 0.30 91.20 ± 0.28 90.09 ± 0.39

p p p
85.08 ± 0.28 91.23 ± 0.29 90.31 ± 0.41

p p p p
85.28 ± 0.33 91.37 ± 0.30 90.70 ± 0.44

p p p p
85.52 ± 0.29 91.43 ± 0.28 90.85 ± 0.37

The distance metric of the baseline is Cosine distance. The best results are displayed in boldface (mean ±

S.D.%). Numbers are in percentage (%). The mark (
p
) indicates that the module is used

Fig. 10 Visualization of attention heat maps generated by HAM.

a shows the focal region on the fine-grained dataset CUB, b indicates

the focal region on mini-Imagenet
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4.4 Comparison with state-of-the-art

To evaluate the effectiveness of the proposed method, we

compare it with classical and advanced few-shot algo-

rithms. We will perform a series of experiments on the

common few-shot datasets mini-ImageNet and CUB in n-

way k-shot experimental setting to validate the perfor-

mance of our method on general datasets. Table 2 shows

the comparison results between our approach and the state-

of-the-art methods on mini-ImageNet and CUB.

For each dataset, we train the feature extractor using

base class samples and evaluate the model performance

using novel class samples. We try the commonly used

feature extraction backbone networks Conv-4 and ResNet-

12 respectively [11, 22, 30]. As shown in Table 3, the

performance of the lightweight Conv-4 is slightly inferior

to the complex ResNet-12. Given our model’s sensitivity to

fine-grained feature extraction, the following experiments

are conducted based on ResNet-12, which is more capable

of feature extraction.

Table 2 presents the classification results on mini-Ima-

geNet and CUB datasets. As observed in Table 2, our

proposed method achieves better classification results

compared to the optimization-based and metric-based few-

shot learning methods. Experiments on mini-ImageNet

show that the proposed model achieves 70.75% accuracy

under the 5-way1-shot experimental setting, which is a

0.91% improvement over the sub-optimal method STANet

[59]. In the 5-way 5-shot experimental setting, the model’s

accuracy reaches 85.52%, marking a 0.64% improvement

over the sub-optimal approach. Compared with mini-Ima-

geNet, the CUB dataset, where all classes belong to the

same domain and the feature similarity of each class is

higher, is more suitable for our approach. On CUB dataset,

the accuracy of the proposed model reaches 80.68% and

91.43% for 5-way 1-shot and 5-way 5-shot settings,

respectively, with 1.08% and 0.71% improvement com-

pared to SOTA method.

Based on all the experimental results, we can conclude

that:

(1) Compared to mini-ImageNet, our model has better

performance on CUB, where the inter-class distribu-

tion is more similar.

(2) Compared to 5-way 5-shot setting, our model has a

stronger performance improvement under 5-way

1-shot setting.

This phenomenon can be attributed to the fact that, in

contrast to metric-based algorithms such as DeepBDC [55]

and optimization-based models like MAML [30], our

proposed method effectively leverages the prior feature

information from all base classes, resulting in more rea-

sonable and accurate prototype representations for novel

classes. The CUB dataset contains only one kind of

organism, bird, with similar feature distribution among

different classes. The excellent performance under 1-shot

setting is also due to this distribution transfer between base

and novel classes. Prototype calibration and decision

boundary calibration enable the proposed model to better

handle this 1-shot classification task.

4.5 Domain-specific tasks

For domain-specific real-world tasks such as agricultural

plant disease classification, large-scale sample collection is

not feasible due to the indeterminable nature of disease

samples, which often require labeling by experienced

agricultural experts. Currently, there are some open-source

datasets available online, but their classification granularity

Fig. 11 5-way n-shot classification accuracy (%) on mini-ImageNet and CUB with different distance metrics. Green indicates Euclidean distance

and yellow indicates Mahalanobis distance. a shows the experimental results in mini-ImageNet, b shows the experimental results in CUB
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usually only reaches the disease category. The FPV dataset

targeted in this paper classifies the categories to disease

severity, which is of great significance for solving practical

agricultural problems. Therefore, this section focuses on

the experiments and discussions for FPV dataset. To

thoroughly validate our model’s superiority in agricultural

domain, besides FPV, we additionally include two datasets,

PV from laboratory settings and PlantDoc from real agri-

cultural fields, as our experimental datasets.

Table 2 Comparison of the

state-of-the-art few-shot

classification algorithms on the

mini-ImageNet and CUB dataset

Methods mini-ImageNet CUB

5way1shot 5way5shot 5way1shot 5way5shot

Optimization-based

MAML [30] (2017) 57.40 ± 0.47 72.42 ± 0.65 70.44 ± 0.55 85.50 ± 0.33

E3BM [9] (2020) 64.45 ± 0.34 81.04 ± 0.53 78.22 ± 0.61 89.34 ± 0.35

EMO [48] (2023) 69.15 ± 0.34 84.13 ± 0.25 – –

Generation-based

MVT [14] (2020) – 67.67 ± 0.70 – 80.33 ± 0.60

TriNet [49] (2019) 58.12 ± 1.37 76.92 ± 0.69 69.61 ± 0.46 84.10 ± 0.30

Metric-based

Baseline [50] (2019) 60.00 ± 0.44 80.55 ± 0.31 71.85 ± 0.46 88.09 ± 0.25

Baseline?? [50] (2019) 63.25 ± 0.44 81.67 ± 0.30 75.25 ± 0.45 89.85 ± 0.23

Meta-Baseline [23] (2020) 64.17 ± 0.45 81.41 ± 0.31 78.16 ± 0.43 90.04 ± 0.23

Neg-Margin [51] (2020) 61.70 ± 0.46 78.03 ± 0.33 78.14 ± 0.46 90.00 ± 0.24

FEAT [52] (2020) 66.78 ± 0.20 82.05 ± 0.14 77.53 ± 0.83 89.79 ± 0.28

BML [53] (2021) 67.04 ± 0.63 83.63 ± 0.29 77.21 ± 0.63 90.45 ± 0.36

DeepEMD [35] (2020) 65.91 ± 0.82 82.41 ± 0.56 75.65 ± 0.63 88.69 ± 0.50

MCL [54] (2022) 67.36 ± 0.20 83.63 ± 0.20 - –

DeepBDC [55] (2022) 67.83 ± 0.43 84.45 ± 0.29 79.01 ± 0.42 90.42 ± 0.17

SetFeat12 [56] (2022) 68.32 ± 0.62 82.71 ± 0.46 79.60 ± 0.80 90.48 ± 0.44

DeepEMD v2 [57] (2022) 68.77 ± 0.29 84.13 ± 0.53 – –

IAM [58] (2023) 67.95 ± 0.19 84.86 ± 0.13 78.28 ± 0.22 90.72 ± 0.12

STANet [59] (2023) 69.84 ± 0.47 84.88 ± 0.30 - -

Ours 70.75 – 0.41 85.52 – 0.29 80.68 – 0.43 91.43 – 0.28

Numbers are in percentage (%). The best results are highlighted in bold (mean ± S.D.%)

Table 3 Few-shot results with

different settings of backbones

(Conv-4 and ResNet-12)

Methods Backbones mini-ImageNet CUB

5way1shot 5way5shot 5way1shot 5way5shot

Relation N [10] (2018) Conv-4 49.69 ± 0.43 68.14 ± 0.35 – –

ResNet-12 54.12 ± 0.46 71.31 ± 0.37 73.22 ± 0.48 86.94 ± 0.28

Baseline [50] (2019) Conv-4 46.06 ± 0.39 65.83 ± 0.35 47.73 ± 0.41 68.77 ± 0.38

ResNet-12 60.00 ± 0.44 80.55 ± 0.31 71.85 ± 0.46 88.09 ± 0.25

Baseline?? [50] (2019) Conv-4 51.16 ± 0.43 67.99 ± 0.36 62.01 ± 0.49 77.72 ± 0.36

ResNet-12 63.25 ± 0.44 81.67 ± 0.30 75.25 ± 0.45 89.85 ± 0.23

Meta-Baseline [23] (2020) Conv-4 51.35 ± 0.42 66.99 ± 0.37 58.98 ± 0.47 75.77 ± 0.37

ResNet-12 64.17 ± 0.45 81.41 ± 0.31 78.16 ± 0.43 90.04 ± 0.23

Neg-Margin [51] (2020) Conv-4 51.15 ± 0.42 67.32 ± 0.35 64.08 ± 0.48 80.69 ± 0.34

ResNet-12 61.70 ± 0.46 78.03 ± 0.33 78.54 ± 0.46 90.19 ± 0.24

Ours Conv-4 51.71 ± 0.41 68.64 ± 0.35 65.45 ± 0.47 81.91 ± 0.34

ResNet-12 70.75 ± 0.41 85.52 ± 0.29 80.68 ± 0.43 91.43 ± 0.28

The best results are displayed in boldface (mean ± S.D.%). Numbers are in percentage (%)
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We propose two classification tasks for domain-specific

datasets, Task-1 is a ‘‘Fine-to-Fine’’ task and Task-2 is a

‘‘Coarse-to-Fine’’ task. The base class samples for Task-1

are fine-grained data (e.g., data with disease labels), and the

novel class samples are data with the same granularity

level. Task-2 is a completely novel task with coarse-

grained data (e.g., plant species) for the base classes and

fine-grained data (e.g., disease severity) for the novel

classes.

PV is comprised of 54,306 plant disease images, cov-

ering 38 disease categories across 14 plant species. Image

labels follow the format ‘‘plant disease.’’ For the ‘‘Fine-to-

Fine’’ task, this dataset is divided into 15 base classes, 10

validation classes, and 13 novel classes. For the ‘‘Coarse-

to-Fine’’ task, we first evenly divide the dataset into two

disjoint subsets. Subset A is divided into 14 classes based

on plant species and serves as the coarse-grained base

classes. Subset B is categorized based on plant diseases,

and 20 classes are selected from it as novel classes.

PlantDoc consists of images captured under real culti-

vation conditions, encompassing 27 disease categories and

covering 13 species. In total, the dataset contains 2,598

images. To perform the ‘‘Fine-to-Fine’’ task, we divide this

dataset into 12 base classes, 7 validation classes, and 8

novel classes. For the ‘‘Coarse-to-Fine’’ task, we first

evenly divide the dataset into two disjoint subsets. Subset

A is divided into 13 classes based on plant species and

serves as the coarse-grained base classes. Subset B is cat-

egorized based on plant diseases, and 20 classes are

selected from it as novel classes.

FPV is a fine-grained plant disease dataset with further

class refinement based on PV. The dataset is labeled to

disease severity, and the label composition format is ‘‘plant

disease severity.’’ It contains 10 plant species and 61 plant

diseases. Since the number of samples for two diseases is

less than five, we exclude them from the dataset splitting.

For the ‘‘Fine-to-Fine’’ task, we select 30 of these diseases

as base classes, 14 as validation classes, and 15 as novel

classes. For the ‘‘Coarse-to-Fine’’ task, we first evenly

divide the dataset into two disjoint subsets. Subset A is

divided into 14 classes based on plant species and serves as

the coarse-grained base classes. Subset B is categorized

based on plant diseases, and 20 classes are selected from it

as novel classes.

Figure 9 shows some dataset examples, with the coarse-

grained base class samples annotated as ‘‘plant species’’ in

the inner circle and the fine-grained novel class samples

annotated as ‘‘plant disease severity’’ in the outer circle. In

this novel ‘‘Coarse-to-Fine’’ task, the base class samples

are visible with labels accurate only to plant species; while,

the novel classes data with invisible labels need to be

classified into fine-grained disease severity. The image-

label data are derived from FPV.

Task-1: ‘‘Fine-to-Fine.’’

The ‘‘Fine-to-Fine’’ task is the same as the experimental

setting on mini-ImageNet and CUB, where the model is

trained on base classes and then transferred to novel classes

with the same granularity for application.

In this section, a series of experiments will be conducted

on PlantDoc and FPV with 5-way 1-shot and 5-way 5-shot

experimental settings. Unlike other few-shot disease clas-

sification tasks, this paper focuses on fine-grained few-shot

classification tasks specific to the disease severity for the

first time.

As shown in Table 4, for coarse-grained PlantDoc

(compared to FPV), our approach outperforms other SOTA

methods in both 1-shot and 5-shot settings. Specifically, for

PlantDoc collected from real agricultural scenes, the 5-shot

Fig. 12 Visualization of the fine-grained focal region localization on

the FPV dataset. The figure shows 6 fine-grained disease samples and

their attention heat map (second column without HAM, third column

with HAM). Different shapes represent different diseases (e.g., d

represents Grape-black bot fungus). The color represents the disease

severity (e.g., light blue and dark blue represent Grape-black bot

fungus-general and -serious, respectively). 7 indicates a misclassifi-

cation and 4 indicates a correct classification
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accuracy is improved by 1.09% compared to the sub-op-

timal DeepEMD v2. In 1-shot tasks, our method demon-

strates improvements of 2.54%, 1.28%, 1.05%, and 1.13%

when compared to Meta-Baseline [23], DeepBDC [55],

SetFeat12 [56], and DeepEMD v2 [57] respectively.

Compared to PlantDoc, FPV exhibits higher intra-class

variance and lower inter-class variance, rendering recog-

nition more challenging. On FPV, our proposed model

achieves accuracies of 81.03% and 90.85% in 1-shot and

5-shot settings, respectively, which improves by 1.82% and

Table 4 Comparison of the state-of-the-art few-shot classification algorithms on domain-specific datasets (Task-1: Fine-to-Fine)

Methods FPV (fine-grained ! fine-grained) PlantDoc (fine-grained ! fine-grained)

5way1shot 5way5shot 5way1shot 5way5shot

Optimization-based

MAML [30] (2017) 69.96 ± 0.46 82.84 ± 0.40 74.25 ± 0.33 84.82 ± 0.22

E3BM [9] (2020) 78.02 ± 0.42 88.34 ± 0.40 82.43 ± 0.40 90.66 ± 0.25

Metric-based

Baseline [50] (2019) 71.96 ± 0.37 87.25 ± 0.22 76.78 ± 0.50 87.96 ± 0.17

Baseline?? [50] (2019) 76.11 ± 0.40 88.73 ± 0.31 80.46 ± 0.51 89.82 ± 0.14

Meta-Baseline [23] (2020) 78.25 ± 0.41 88.76 ± 0.26 81.61 ± 0.40 90.12 ± 0.23

Neg-Margin [51] (2020) 78.06 ± 0.46 88.48 ± 0.44 81.24 ± 0.37 89.95 ± 0.17

FEAT [52] (2020) 76.25 ± 0.41 88.02 ± 0.24 80.11 ± 0.37 90.40 ± 0.30

BML [53] (2021) 77.21 ± 0.63 89.33 ± 0.29 81.62 ± 0.35 90.74 ± 0.37

DeepEMD [35] (2020) 76.69 ± 0.47 87.92 ± 0.34 80.41 ± 0.33 90.04 ± 0.20

DeepBDC [55] (2022) 79.00 ± 0.52 89.45 ± 0.26 82.87 ± 0.28 91.50 ± 0.23

SetFeat12 [56] (2022) 79.21 ± 0.50 89.07 ± 0.28 83.10 ± 0.28 91.72 ± 0.12

DeepEMD v2 [57] (2022) 78.86 ± 0.46 89.20 ± 0.28 83.02 ± 0.37 92.11 ± 0.30

Ours 81.03 ± 0.44 90.85 ± 0.37 84.15 ± 0.30 93.20 ± 0.17

The best results are highlighted in bold (mean ± S.D.%). Numbers are in percentage (%)

Table 5 Comparison of the state-of-the-art few-shot classification algorithms on domain-specific datasets (Task-2: Coarse-to-Fine)

Methods FPV (coarse ! fine) PlantDoc (coarse ! fine) PV (coarse ! fine)

5way1shot 5way5shot 5way1shot 5way5shot 5way1shot 5way5shot

Optimization-based

MAML [30] (2017) 63.67 ± 0.47 73.38 ± 0.37 72.32 ± 0.37 80.04 ± 0.22 75.64 ± 0.37 83.37 ± 0.40

E3BM [9] (2020) 74.02 ± 0.44 82.79 ± 0.34 78.86 ± 0.35 86.00 ± 0.27 79.83 ± 0.30 87.80 ± 0.34

Metric-based

Baseline [50] (2019) 69.03 ± 0.41 81.44 ± 0.20 76.65 ± 0.33 84.86 ± 0.21 76.09 ± 0.28 86.03 ± 0.22

Baseline?? [50] (2019) 73.26 ± 0.51 82.31 ± 0.34 77.96 ± 0.35 85.72 ± 0.21 78.68 ± 0.27 87.60 ± 0.20

Meta-Baseline [23] (2020) 73.83 ± 0.55 83.45 ± 0.29 78.53 ± 0.36 86.22 ± 0.22 79.64 ± 0.35 88.00 ± 0.30

Neg-Margin [51] (2020) 72.18 ± 0.52 82.64 ± 0.33 77.94 ± 0.29 86.04 ± 0.27 79.22 ± 0.29 87.66 ± 0.27

FEAT [52] (2020) 71.03 ± 0.47 81.92 ± 0.29 77.61 ± 0.31 85.79 ± 0.30 78.33 ± 0.31 87.57 ± 0.25

BML [53] (2021) 71.61 ± 0.55 82.87 ± 0.30 78.05 ± 0.42 86.27 ± 0.31 78.90 ± 0.41 88.12 ± 0.19

DeepEMD [35] (2020) 71.33 ± 0.44 81.00 ± 0.31 77.16 ± 0.37 85.62 ± 0.25 78.62 ± 0.40 87.08 ± 0.42

DeepBDC [55] (2022) 74.90 ± 0.48 82.66 ± 0.27 78.94 ± 0.37 86.55 ± 0.25 80.11 ± 0.37 88.40 ± 0.25

SetFeat12 [56] (2022) 75.16 ± 0.48 82.93 ± 0.30 79.22 ± 0.35 86.80 ± 0.24 80.35 ± 0.25 88.49 ± 0.31

DeepEMD v2 [57] (2022) 74.44 ± 0.45 83.26 ± 0.28 79.01 ± 0.33 86.43 ± 0.27 80.08 ± 0.28 88.14 ± 0.26

Ours 76.51 ± 0.30 84.16 ± 0.26 80.26 ± 0.36 87.73 ± 0.24 81.43 ± 0.32 89.43 ± 0.24

The best results are highlighted in bold (mean ± S.D.%). Numbers are in percentage (%)
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1.40% compared to the second-best method. The experi-

ments in Table 4 indicate that our model effectively adapts

to the characteristics of fine-grained tasks and demonstrates

superior performance across multiple datasets in specific

domains. This experiment is similar to other fine-grained

datasets (e.g., CUB) experiments, so we only conduct a

brief analysis of the results here.

Task-2: ‘‘Coarse-to-Fine.’’

The ‘‘Coarse-to-Fine’’ task is a novel disease classifi-

cation task proposed in this paper specifically for the

agriculture field. As shown in Fig. 9, the inner circle rep-

resents the classes encountered during model training,

which are labeled only to plant species without requiring

high-cost disease annotations. The outer circle represents

the novel classes we need to identify, which are fine-

grained classes specific to plant disease severity. In the

experiment, we first evenly divide the dataset into two

disjoint subsets. Subset A is divided into n classes

according to plant species and is used as coarse-grained

base classes. Subset B is classified according to disease

severity, and 20 of these classes are selected as novel

classes.

Table 5 shows the classification results under this

experimental setup. It is evident that compared to the

classification results at the same granularity, there is a

certain degree of degradation in accuracy. This phe-

nomenon can be attributed to the alteration in class gran-

ularity between the base and novel classes, where

granularity significantly impacts the classification task.

However, we can also see that our model exhibits sub-

stantial enhancement over the existing state-of-the-art

(SOTA) method within the ‘‘Coarse-to-Fine’’ setting. The

experimental results under 5-way 5-shot settings reveal that

our method achieves accuracy improvements of 0.90%,

0.94% and 0.93% on FPV, PV and PlantDoc, respectively,

compared to the second-best model. Our method outper-

forms the current SOTA few-shot classification methods on

the 5-shot settings. It is well known that ‘‘the fewer images

selected in each category (such as 1-shot), the higher the

requirement for model optimization capability‘‘. The

experimental results of our model under 5-way 1-shot are

also improved by different degrees. Specifically, on the

FPV dataset of primary interest, our method improves by

1.61%, 1.35% and 2.07% compared with DeepBDC [55],

SetFeat12 [56], and DeepEMD v2 [57], respectively, and

shows superiority in the 1-shot classification task.

In summary, our model exhibits superior performance

over other SOTA methods [55–57] in both the 1-shot and

5-shot settings, particularly in the 1-shot case. The reason

for this phenomenon is that as the number of support sets

decreases, the available information for each category

becomes more limited. However, compared with other

few-shot learning methods, our model makes more

effective use of the information provided by the base

classes. Through the efficient utilization of base class dis-

tribution and optimization of decision boundaries, higher

classification accuracy is ultimately obtained in the 1-shot

setting. The significance of this task is that we can achieve

the identification of few-shot hard-to-annotate fine-grained

data based on easily labeled domain-specific coarse-

grained data.

Attention visualization (Task-2): In addition, we

visualize the focal regions of some samples in FPV. We

select some samples from six fine-grained grape disease

classes and generate heat maps showcasing feature

weights. The first column in Fig. 12 displays the original

grape leaves, which are meticulously categorized into six

diseases (including Grape-Black Rot Fungus-general,

Grape-Black Rot Fungus-serious, etc.). The second and

third columns exhibit the visualized heat map before and

after adding HAM, respectively. It can be observed that our

model shows different heat map distributions on each class,

and extracts different key features. The key object regions

captured by our method contribute to extracting essential

discriminative features.

Feature map visualization (Task-2): To better

demonstrate how the hybrid attention method affects fea-

ture extraction. We visualize the feature embedding space

in select convolutional layers, as shown in Fig. 13. The

same as before, we compress multiple channels into a

single channel for feature map visualization. From Fig. 13,

we can see that HAM helps outline the object from the

background, preserving more details and suppressing

background noise.

Confusion matrix and t-SNE visualization (Task-2):

The confusion matrix comparing our method with the

baseline model on FPV is presented in Fig. 14. Class 17

represents the healthy grape class. Class 18, 19, 20, 21, 22,

and 23 are six representative classes of fine-grained grape

diseases, which are identical to the six disease categories

shown in Fig. 12. It can be seen that our method greatly

improves the classification accuracy of class 20 and class

21, and reduces the possibility of class 17 being misclas-

sified as class 18. We perform t-SNE dimensionality

reduction for the high-dimensional representations of easy-

to-classify samples and hard-to-classify samples. For the

convenience of viewing, we only show the dimensionality

reduction results for some samples. Figure 15 shows the

dimensionality reduction results for the easy-to-classify

samples, corresponding to the 10 coarse-grained base

classes images (Labeled as plant species). Figure 16 shows

the t-SNE visualization for the 7 fine-grained novel classes

presented in the confusion matrix, where each class has

very similar feature representations.

Case study (Task-2): The 7 in Fig. 12 displays the most

challenging class pairs for classification. For instance,
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samples from class 20 are usually misclassified as class 21.

As can be seen in Fig. 12, there is very little difference

between these classes. This similarity even confuses agri-

cultural experts to distinguish them.

Fig. 15 t-SNE visualization of 10 coarse-grained base classes (b1-

apple, b2-cherry, b3-corn, b4-grape, b5-citrus, b6-peach, b7-pepper,

b8-potato, b9-strawberry, b10-tomato). The figure shows the 3D

t-SNE visualization. The ‘‘b ? number’’ in the figure represent class

numbers

Fig. 13 Visualization of feature maps under different layers. Different columns represent the visual feature maps of different layers. Different

rows represent different disease samples respectively

Fig. 14 Confusion matrix of the baseline and our model. 17, 18, 19,

20, 21, 22, and 23 are seven representative classes of fine-grained

grape diseases. Each column in the matrix represents the prediction

result. Each row represents the real label. The 7 fine-grained classes

shown in the figure are consistent with the classes in Figs. 12 and 16

Neural Computing and Applications

123



To summarize the above experimental phenomena, few-

shot classification still faces the problem of fine-grained

classification. Compared with the results of existing

methods, the model proposed in this paper achieves sig-

nificant performance improvement under different task

settings. This fully demonstrates the advantages of the

proposed method:

• Through the use of AIPCM and TDBCM, we obtain the

ability to capture critical regions and efficiently use the

available feature distributions in the base class samples

to obtain more reasonable prototype representations and

decision boundaries. Our method has important value in

fine-grained classification tasks where the inter-class

distribution is similar.

• For domain-specific applications where data acquisition

is difficult, such as the fine-grained agricultural disease

classification, our model has strong applicability and

the most significant effect improvement is observed on

FPV. The few-shot approach proposed in this paper is

of great importance in smart agriculture fine-grained

disease classification.

5 Conclusion

Originating from real-world demand, the research work

focuses on the field of smart agriculture and explores a

novel few-shot fine-grained disease classification task. We

first propose an attention-based inverse Mahalanobis dis-

tance weighted prototype calibration module (AIPCM),

which calibrates the novel class prototype representation

by weighting the similarity of the prior distribution. By

transferring the statistical information of base classes with

sufficient samples to the fine-grained novel classes with

fewer samples, it achieves prototype and distribution cali-

bration of 1-shot data. To calibrate the decision boundary

of the novel classes distribution, we introduce the Maha-

lanobis distance based on class-covariance metric instead

of the commonly used Euclidean/Cosine distance, effec-

tively utilizing the mean and covariance of high-dimen-

sional features of base classes. Experimental results on

few-shot datasets mini-ImageNet and CUB demonstrate

that the proposed model achieves the best classification

performance. In particular, we address the few-shot clas-

sification problem of natural images on open-source fine-

grained plant disease dataset, and explore a novel ‘‘Coarse-

to-Fine’’ plant disease classification task (base classes:

coarse-grained! novel classes: fine-grained). This attempt

offers a practical solution to domain-specific real-world

applications.
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